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Abstract

We compare the qualitative predictions of an existing quantum
model and a novel multinomial processing tree (MPT) model
of the interference effect using parameter space partitioning
(PSP). An interference effect occurs when categorizing a stim-
ulus changes the marginal probability of a subsequent deci-
sion, leading to a violation of the LOTP. The PSP analysis re-
vealed that our MPT model can produce the same qualitative
patterns as the quantum model. Further analysis, however, re-
vealed that the models differ in several important ways. First,
a larger volume of the MPT model’s parameter space produces
a smaller number of interference effects compared to the quan-
tum model. Second, the distribution of volume across patterns
is more diffuse for the MPT model, indicating it is more flexi-
ble than the quantum model. We discuss limitations and future
directions.
Keywords: Multinomial processing trees; Quantum cogni-
tion; Interference effects; Categorization; Model flexibility

Introduction
An interference effect occurs when an action or judgment
changes the marginal probability of a subsequent deci-
sion (Wang & Busemeyer, 2016; Busemeyer et al., 2011).
One reason interference effects are interesting from a the-
oretical perspective is that they violate a law of classical
probability theory (CPT) called the law of total probabil-
ity (LOTP). Adherence to the LOTP means that for deci-
sion D and set of categories {Ci}i∈I , the marginal distribu-
tion of D is given by Pr(D) = ∑

n
i=1 Pr(D | Ci)Pr(Ci). Pre-

vious research has demonstrated that categorizing face in-
terferes with the subsequent decision to attack, such that
Pr(D) ̸= ∑

n
i=1 Pr(D | Ci)Pr(Ci) (Wang & Busemeyer, 2016;

Busemeyer et al., 2011).
Interference effects present a challenge for many models

that are based on CPT because they violate the LOTP. For
example, two models based on CPT—a Markov model and a
signal detection model—are unable to account for the entire
pattern of interference effects that have been observed empir-
ically (Wang & Busemeyer, 2016). By contrast, a quantum
model called the belief-action entanglement (BAE) model
provides an account of the interference effect (Wang & Buse-
meyer, 2016). The reason that the BAE model is successful in
accounting for interference effects is that the less restrictive

axioms of quantum probability theory allow for the violation
of the total law of probability.

Our primary goal is to demonstrate as a proof of con-
cept that a model based on CPT can produce interference
effects. Specifically, we show that a multinomial processing
tree (MPT; Riefer & Batchelder, 1988) composed of a catego-
rization process, a category revision process, and a decision
process is sufficient to produce interference effects. Our sec-
ond goal is to compare the qualitative patterns of interference
effects that the new model and the BAE model can produce.
Understanding the prediction space of a model is important
for understanding its behavior, assessing flexibility, and iden-
tifying diverging predictions between different models. An
overly flexible model provides a less persuasive account of
the data than a less flexible model (Roberts & Pashler, 2000).

The remainder of this article is organized as follows. In
the next section, we describe the categorization-decision
paradigm used to study interference effects. Next, we pro-
vide a brief overview of the BAE quantum model of interfer-
ence effects. We then introduce a new MPT model which can
also produce the empirical pattern of interference effects. We
compare the qualitative patterns of interference effects each
model can produce using a method called parameter space
partitioning (Pitt et al., 2006). We conclude with a discus-
sion of the limitations of the proposed model and the need
for a unified account of interference effects, order effects and
other phenomena based on CPT.

Categorization-Decision Paradigm
One popular paradigm for studying interference effects is the
categorization-decision sequential choice paradigm (Wang &
Busemeyer, 2016). Prior research with this paradigm has
demonstrated that inclusion of an explicit categorization stage
interferes with subsequent decision making (Wang & Buse-
meyer, 2016). On each trial, subjects are presented with a
face and must decide whether to attack or withdraw. Each
face is either a good guy, who is likely to be friendly, or a
bad guy who is likely to be hostile. Although subjects do
not know the category associated with each face (good vs.
bad), they can use facial features, such as width, as cues to



aid in the decision process. For simplicity, we define type-b
and type-g faces as faces most likely to be in the bad or good
category, respectively. The extended paradigm involves three
conditions (Wang & Busemeyer, 2016). In the decision-only
condition (d), subjects make a single decision: to attack or
withdraw from each face. In the categorize and decide condi-
tion (cd), subjects categorize each face as good or bad before
proceeding to the attack/withdraw decision. In the third con-
dition (xd), subjects are given the true category of each face
prior to making a decision.

According to many models based on CPT, the marginal
probability of attacking (irrespective of category member-
ship) should be equal in each condition as required by the
LOTP, which states:

Prd(A = a | F = x) =

Prcd(A = a | F = x,C = g)Prcd(C = g | F = x)+

Prcd(A = a | F = x,C = b)Prcd(C = b | F = x)
(1)

where random variables A, F and C represent the action, fa-
cial feature, and category, respectively. Possible actions are
a for attack and w for withdrawal; possible values for facial
feature are tb for type-b and tg for type-g, and possible cat-
egories are b for bad and g for good. Each probability state-
ment is subscripted by its condition; for example, cd is the
categorize and decide condition. The left-hand-side repre-
sents the case in which no category judgment is made, and the
right-hand-side represents two possible cases—one in which
the face is categorized as bad, and another in which the face
is categorized as good. Because good and bad are mutually
exclusive and exhaustive states of the world, the probability
of each state should sum to the probability in which neither
state is known. If this equation is true, the LOTP holds, and
no interference effect occurs. However, if the LOTP does not
hold, it follows that the act of categorizing the face interferes
with the subsequent decision.

An example of a typical interference effect pattern can be
found in Table 1. The pattern is typified by interference ef-
fects of approximately equal magnitude but opposite direc-
tion in the xd condition, a positive interference effect for type-
b faces in the cd condition, and the absence of an interfer-
ence effect for type-g faces in cd condition. This asymmetri-
cal pattern in cd has been challenging for CPT models, such
as signal detection and Markov models, to predict (Wang &
Busemeyer, 2016).

Table 1: Interference effects reported in Experiment 2
of Wang & Busemeyer (2016). Values are computed as the
difference of the left and right hand side of Equation 1.

xd cd
type-b type-g type-b type-g

0.03 -0.03 0.04 0.00

Belief-Action Entanglement Model
The belief-action entanglement (BAE) model is a quantum
model of interference effects (Wang & Busemeyer, 2016).
Importantly, the axioms on which quantum models are based
allow for the violation of certain rules in classical probabil-
ity, such as the LOTP. In the BAE, beliefs are represented
by four orthornormal basis vectors corresponding to the four
combinations of category (good vs. bad) crossed with action
(attack vs. withdraw). Prior to making a decision, a person is
in an indefinite state called a superposition, which is a linear
combination of the four basis vectors.

During the deliberation process, a person’s indefinite state
evolves according to a wave function with different potentials
to attack or withdraw. The decision dynamics are governed
by four utility parameters which represent the utilities of at-
tacking under different conditions. For example, µtg,b is the
utility of attacking a type-g face that has been categorized
as bad. The utility parameters are are assumed to be sym-
metric for type-g faces: µtg,g = −µtg,b. However, for type-b
faces, the utilities can be asymmetrical, which allows inter-
ference to occur. In the d and cd conditions, entanglement
aligns beliefs and actions to be consistent with each other. A
parameter, γ, controls the degree of entanglement as well as
its direction. Importantly, the entanglement and the utility
parameters interact to produce interference effects. An inter-
ference effect will occur whenever the entanglement param-
eter is nonzero and the utility parameters for a given feature
type (e.g., type-b) are asymmetrical (e.g., µbg,b ̸=−µtb,g). The
BAE also includes a parameter j, which represents the proba-
bility of categorizing a face into its most likely category (e.g.,
type-g categorized as good).

Judgment Revision Model
We developed a novel multinomial processing tree (MPT)
model of the categorize-decide paradigm called the Judgment
Revision model (JRM). Although the JRM is based on CPT, it
can produce interference effects under specific conditions. A
MPT characterizes how latent cognitive processes map onto
categorical responses which follow a multinomial distribu-
tion (Riefer & Batchelder, 1988). As the name implies, MPTs
are organized as a tree-like structure in which nodes represent
cognitive states or processes and branches that connect nodes
represent the transition from one cognitive state or process
to another. Each branch is associated with a parameter rep-
resenting a transition probability between cognitive states or
processes. A series of transitions ultimately terminates at a
response node representing a specific response category. The
probability of following a specific path to a response node
(i.e., a series of connected branches) is computed as the prod-
uct of transition probabilities. In a MPT, several paths can
terminate at a response node representing the same response
category; in this case, the marginal probability of a specific
response is the sum of all path probabilities linked to the re-
sponse category.

The JRM assumes interference effects emerge from the in-



teraction of three cognitive processes. The first cognitive pro-
cess is the decision to attack a face, which is represented by
parameter a. The probability of attacking depends on both
the face type and the category of the face, leading to the use
of two indices: (1) the first index represents the feature type
(tg for type-g and tb for type-b), and (2) the second index rep-
resents the category (g for good and b for bad). The second
cognitive process is the categorization of a face as good or
bad. The parameter j represents the probability of categoriz-
ing a face into its most likely category (e.g., type-g as good).
The third cognitive process is the decision to continue with
the initial category judgment or to revise it, which is captured
by parameter c. With probability c, a person is certain in the
initial category judgment and continues to the decision pro-
cess without revising the initial category. With probability
1− c, a person is uncertain in the initial category judgment
and revises it from good to bad (or vice versa) before contin-
uing to the decision process. As we detail later, if one can
assume that certainty in the categorization (i.e., c) can vary
across some conditions, the JRM can produce the observed
interference effect pattern.

Predictions

Category Given Condition In the xd condition, subjects
are given both the feature and the category cues prior to mak-
ing a decision to attack or withdraw. Parameters j and c play
no role in this condition because the correct category infor-
mation is provided, thus leading to simplified equations. The
probability of attacking a type-b face in category b is:

Prxd(A = a | F = tb,C = b) = atb,b.

The probability of attacking a type-b face in category g is:

Prxd(A = a | F = tb,C = g) = atb,g

The probability of attacking a type-g face in category b is:

Prxd(A = a | F = tg,C = b) = atg,b

The probability of attacking a type-g face in category g is:

Prxd(A = a | F = tg,C = g) = atg,g

To compute the marginal probability of attacking in the xd
condition, it is necessary to multiply the conditional attack
probabilities by the objective category probabilities, p. For
this, we assume that p is the same for both b and g faces; thus
p is the probability that a face belongs to the most probable
category (e.g., type-g is in category g). Formally,

p = Pr(C = g | F = tg) = Pr(C = b | F = tb).

The marginal probability of attacking a type-g face in the

Figure 1: Example trees for the cd condition. The top tree
represents the categorization process for a type-b stimulus in
the cd condition. The bottom tree represents the decision pro-
cess for a type-b stimulus categorized as bad

xd condition is:

Prxd(A = a | F = tg)

= ∑
n∈{g,b}

Prxd(A = a,C = n | F = tg)

= ∑
n∈{g,b}

Prxd(A = a |C = n,F = tg)Pr(C = n | F = tg)

= p ·atg,g +(1− p) ·atg,b.

Similarly, the marginal probability of attacking a type-b face
in the xd condition is:

Prxd(A = a | F = tb) = p ·atb,b +(1− p) ·atb,g

Categorize and Decide Condition In the cd condition,
subjects are instructed to categorize the face before deciding
whether to attack or withdraw. The first tree in Figure 1 illus-
trates the categorization process for a type-b face. In the first
branch, a type-b face is categorized as good with probability
1− j. In the second branch, a type-b face is categorized as
bad with the complementary probability j. The probability of
categorizing a type-b face as good is given by:

Prcd(C = g | F = tb) = 1− j

The probability of categorizing a type-g face as good is:

Prcd(C = g | F = tg) = j

After categorizing the face, a person must decide to attack or
withdraw. As shown in Figure 1, there are two paths lead-
ing to a decision to attack. In the first path, a person is cer-
tain with probability c and continues with the initial category
judgment of bad. The face is then attacked with probability
atb,b. In the second path, a person is uncertain with probabil-
ity 1−c and revises the initial category judgment from bad to



good. Next, the face is attacked with probability atb,g. This
process can be represented mathematically with the following
equation:

Prcd(A = a | F = tb,C = b) = c ·atb,b +(1− c) ·atb,g

One important point to note is that the JRM does not re-
quire certainty in category judgments to be equal in all condi-
tions. In particular, we assume that c is higher in the cd con-
dition in which a type-b face is categorized as good. The c pa-
rameter in this condition is denoted as ck to distinguish it from
c in the other conditions. Importantly, when ck > c, the JRM
can produce a positive interference effect for type-b faces in
the cd condition. Without this assumption, the JRM can only
produce interference effects in the xd conditions. Justification
for this assumption can be found in Table 2 where certainty is
measured as the degree to which conditional attack probabili-
ties are close to the boundaries 0 or 1. As expected, we tend to
see more certainty in xd because all information is provided.
However, this pattern is reversed for type-b face categorized
as good in the cd condition. Thus, we assume ck > c. The
probability of attacking a type-b face categorized as good is:

Prcd(A = a | F = tb,C = g) = ck ·atb,g +(1− ck) ·atb,b.

The probability of attacking a type-g face categorized as bad
is given by:

Prcd(A = a | F = tg,C = b) = c ·atg,b +(1− c) ·atg,g.

The probability of attacking a type-g face categorized as good
is given by:

Prcd(A = a | F = tg,C = g) = c ·atg,g +(1− c) ·atg,b.

Table 2: Conditional attack probabilities reported in Wang &
Busemeyer (2016) Experiment 2 .

Good Bad
type-g type-b type-g type-b

Certain (xd) 0.28 0.40 0.58 0.69
Uncertain (cd) 0.33 0.37 0.53 0.61

The marginal probability of attacking is found by combin-
ing the equations for category judgment and decision pro-
cesses. The marginal probability of attacking a type-b face
in the cd condition is given by:

Prcd(A = a | F = tb) = (1− j) · [ck ·atb,g +(1− ck) ·atb,b]

+ j · [c ·atb,b +(1− c) ·atb,g]

The marginal probability of attacking a type-g face in the
cd condition is given by:

Prcd(A = a | F = tg) = j · [c ·atg,g +(1− c) ·atg,b]

+(1− j) · [c ·atg,b +(1− c) ·atg,g]

Decision Only Condition In the d condition, subjects sim-
ply make the decision to attack or withdraw from each face.
The JRM assumes that an implicit categorization precedes the
decision to attack. The marginal probability of attacking a
type-b face in the d condition is given by:

Prd(A = a | F = tb) = (1− j) · [c ·atb,g +(1− c) ·atb,b]

+ j · [c ·atb,b +(1− c) ·atb,g].

The equation above provides four paths leading to a deci-
sion to attack. The first two paths begin with categorizing a
type-b face as good with probability 1− j. In the first path, a
person is certain in the category judgment with probability c
and continues without revision. From there, a person attacks
with probability atb,g. In the second path, a person is uncer-
tain in the initial category judgment with probability 1−c and
revises it from good to bad. From there, a person attacks with
probability atb,b.

The other two paths begin with categorizing a type-b face
as bad with probability j. In the third path, a person is cer-
tain in the category judgment with probability c and continues
without revision. From there, a person attacks with probabil-
ity atb,b. In the fourth path, a person is uncertain in the initial
category judgment with probability 1− c and revises it from
bad to good. From there, a person attacks with probability
atb,g. The marginal probability of attacking a type-g face in
the d condition is given by:

Prd(A = a | F = tg) = j · [c ·atg,g +(1− c) ·atg,b]

+(1− j) · [c ·atg,b +(1− c) ·atg,g].

Parameter Space Partitioning
We found that the JRM and BAE provide similar quantitative
fits to the data, so we focus instead on comparing their pre-
diction spaces. A model that predicts any pattern provides
little evidence for a theory, no matter how well it fits a partic-
ular data set (Roberts & Pashler, 2000). Thus, it is important
to know the range of patterns a model can and cannot pro-
duce. For this reason, we compare the prediction space of
both models using a qualitative model comparison method
called parameter space partitioning (PSP; Pitt et al., 2006).
PSP explores the parameter space of a model to identify re-
gions associated with different qualitative data patterns. In
contrast to model fitting which assess the quantitative fit of
a model to a specific data set, the goal of PSP is to under-
stand the behavior of the model across its entire parameter
space. In addition, PSP uses volume estimation to determine
the prevalence of various patterns in the parameter space.

In total, the paradigm can produce a maximum of 81 possi-
ble interference effect patterns. Specifically, the interference
effect is computed as the difference between the left hand and
right hand side for the definition of the LOTP in Equation 1.
The resulting difference yields three types of interference ef-
fects: positive, negative and absent (i.e. a approximate differ-
ence of zero). An interference effect is computed in four con-
ditions by crossing face type (type-g,type-b) and condition



(xd,cd). Thus, in total, there are 34 = 81 possible patterns
in the present paradigm. Our criteria for classifying an effect
as absent was a small effect: |Prd(A = a|F = x)− Prz(A =
a|F = x)| ≤ 0.01, where x ∈ {tg, tb} and z ∈ {xd, cd}.

We analyzed two versions of the BAE and the JRM:
(1) a relatively constrained version denoted by subscript

c, and (2) a relatively unconstrained version denoted by sub-
script u. In the JRMc, we constrained the judgment certainty
parameters to be equal: ck = c. In the JRMu, we allowed
ck > c. In the BAEc model, we constrained µtg,b = −µtg,g as
described the original paper (Wang & Busemeyer, 2016). In
the BAEu model, no such constraint was imposed. Except
where constraints apply, the allowable parameter ranges were
j ∈ [0,1] and µtb,b,µtb,g,µtg,g,µtg,b,γ ∈ [−2,2] in the BAE, and
[0,1] for all parameters in the JRM.

Results
Flexibility
One way to assess flexibility is to count the number of pat-
terns a model can produce. As expected, Table 3 shows that
the constrained BAEc model produced 33 = 27 patterns be-
cause it cannot produce interference effects for type-g faces
in cd. By contrast, the BAEu can produce all 81 possible pat-
terns. As expected, the JRMc only produced the 9 interfer-
ence effects in xd condition. However, the JRMu can produce
the same 27 patterns as the BAEc model.

One limitation with using pattern counts to assess flexi-
bility is that it does not take into account the volume of re-
gions associated with a data pattern. Although two models
may produce the same number of data patterns, one model
may concentrate most of its volume on a small subset of pat-
terns whereas a highly flexible model might produce a uni-
form distribution of volume across patterns. We used the Gini
coefficient (Gini, 1921)—an economic measure of income
inequality—to better quantify the flexibility of the models. A
value of 0 corresponds to maximal flexibility (i.e., a uniform
distribution) whereas a value of 1 indicates minimal flexibil-
ity (i.e., all volume assigned to one pattern). As shown in
Table 3, the Gini coefficient varies markedly across models,
but all models are far from maximal flexibility. Although the
JRMc is the least flexible model, it cannot account all empir-
ical patterns (e.g, it cannot produce an interference effect in
cd for type-b faces). In agreement with the pattern count, the
BAEu model is the most flexible model. Although the BAEc
model and the JRMu model produce the same patterns, the
BAEc model is less flexible.

Volume
Next, we analyze the volume of regions associated with dif-
ferent patterns, which are normalized as a percentage of the
volume for the entire parameter space. One challenge with
comparing the volume of patterns between the models is the
large number of patterns (81). Our solution to this problem
is to analyze volume according to three factors: the type of
interference effect (positive, negative, or absent), the number

Table 3: A summary of the qualitative pattern of interference
effects produced by the BAE and JRM models. n is the num-
ber of possible patterns for the model. Gini is a coefficient of
inequality. Volume % for patterns with at least one positive
interference effect, at least one negative interference effect,
and at least one absent effect.

model n Gini positive negative absent

BAEc 27 .868 80.1% 76.6% 100.0%
BAEu 81 .656 81.4% 83.8% 72.3%
JRMc 9 .910 58.1% 56.1% 100.0%
JRMu 27 .791 73.0% 73.2% 100.0%

of interference effects, and the condition.
Table 3 shows the volume associated with positive, neg-

ative and absent interference effects. For example, a pat-
tern was considered positive if at least one interference ef-
fect in the four conditions was positive. Volume for posi-
tive and negative interference effects were similar within each
model. Volume for positive and negative interference effects
was higher for BAE models compared the JRM models. The
volume for at least one absent interference effect was high
across all models.

Across all models, the volume estimates in Table 4 indi-
cate that volume for interference effects in the xd condition
was larger than for the cd condition. The volume in the xd
condition was greater for the BAE models compared the the
JRM models. As expected, the JRMc did not produce any in-
terference effects in the cd condition. Only the BAEu model
had sufficient flexibility to produce interference effects in the
cd condition for type-g faces.

Table 4: Volume % as a function of condition and face type.

model xd
type-b

xd
type-g

cd
type-b

cd
type-g

BAEc 94.6% 97.1% 44.7% 0.0 %
BAEu 94.1% 95.4% 46.3% 46.3%
JRMc 72.6% 71.3% 0.0% 0.0%
JRMu 70.2% 70.4% 63.3% 0.0%

Table 5 shows the estimated volume as a function of num-
ber of interference effects (positive or negative) for each
model. As expected, the JRMc produced a maximum of two
interference effects; the JRMu and the BAEc produced a max-
imum of three interference effects, and the BAEu produced a
maximum of four interference effects. Generally speaking,
the JRM models tend to predict a smaller number of interfer-
ence effects than the BAE models.

Discussion
Our goal was to develop a MPT model of the interference
effect and compare its qualitative predictions to those of the



Table 5: Volume % as a function of number of interference
effects for each model.

interference
effects BAEc BAEu JRMc JRMu

0 0.6% 0.8% 14.2% 9.4%
1 5.1% 5.0% 27.7% 18.5%
2 51.8% 33.1% 58.1% 30.8%
3 42.6% 33.4% 0.0% 41.3%
4 0.0% 27.7% 0.0% 0.0%

BAE quantum probability model. Our MPT model, termed
the JRM, is based on three cognitive processes: a catego-
rization process, a category revision process, and a decision
process. Although the JRM is based on CPT, it can produce
interference effects if the judgment certainty can differ across
conditions.

We used PSP to compare the models in terms of the data
patterns they can and cannot produce. This is important be-
cause a model’s ability to account for an observed data pat-
tern is less impressive if it can predict many rather than few
patterns (Roberts & Pashler, 2000). Our PSP analysis pro-
duced three noteworthy findings. First, an unconstrained ver-
sion of the BAE can produce all qualitative interference effect
patterns, and the JRM with constraints fails to produce the
observed pattern of interference effects in the cd condition.
Second, although the unconstrained JRM and the constrained
BAE produce the same patterns of the interference effect, the
BAE is less flexible because the volume across patterns is
less diffuse compared to the JRM. Third, the volume analysis
indicates that the JRM tends to generate fewer interference
effects compared to the BAE. In summary, the JRM shows
promise as an alternative to the BAE, as it can also produce
the empirical pattern of interference effects. However, the
BAE has the advantage of being less flexible according to the
PSP analysis.

Limitations
We note a few limitations. One limitation is that PSP implic-
itly assumes the prior distribution across parameters is uni-
form. An extension of PSP incorporating information about
the prior probability of parameters may yield different con-
clusions. The JRM has at least one limitation. In contrast to
the BAE, the JRM does not generalize to experiments with
different reward rates or associations among features and cat-
egories because it uses a parameter for each decision proba-
bility. One possible solution to this problem would be replac-
ing the attack probability parameter a with a utility function
mapping stimulus inputs to decision probabilities.

Conclusion
One advantage of quantum cognition is its ability to account
for a wide range of phenomena, such as order effects and in-
terference effects, with similar mechanisms (Busemeyer et

al., 2011). A unified account of these phenomena based on
CPT has yet to emerge. Instead, modeling efforts, including
this one, have focused on demonstrating that models based
on CPT can produce effects that are relatively easy for mod-
els of quantum cognition to produce. Recently, for example,
several CPT-based models of order effects (which violate the
commutative law of CPT) have been proposed, including a
MPT model (Kellen et al., 2018), an ACT-R model (Fisher
et al., 2021), and a Bayesian network model (Moreira & de
Barros, 2021). The wide variety of models in these demon-
strations indicates that the current challenge is not one of fea-
sibility. Indeed, models based on different assumptions can
produce the effects. Instead, this lack of consensus points to
a deeper theoretical challenge in providing an alternative uni-
fied account of order effects, interference effects, and other
phenomena. A viable alternative to quantum cognition must
ultimately seek to provide a unified account. Nonetheless,
developing an alternative model of interference effects is a
necessary first step in this direction.
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