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Abstract 

We have developed an analysis stream for integrating a 
cognitive model with EEG data to reconstruct the cognition of 
individual subjects.  A critical component of this method is 
the Sketch level that combines cognitive modeling and 
classification of EEG data using an HSMM to identify and 
place critical events over the timeline of a task.  Multiple 
factors can influence sketch accuracy.  In this study, we 
investigated the effect of game play elements on sketch 
accuracy across two EEG experiments where subjects 
interacted with the Space Fortress video game.  Experiment 1 
consisted of elaborate interface elements that accompanied 
game events (multiple sound effects, visual explosions).  
Subjects in Experiment 2 performed the same task, but audio 
and visual feedback elements were greatly reduced.  We find 
that sketch accuracy while still much better than chance in 
Experiment 2, was significantly worse than in Experiment 1. 

Keywords: EEG, cognitive modeling, cognitive 
reconstruction, HSMM, MVPA, Space Fortress, video game, 
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Introduction 

Considerable research has studied classifying 

electroencephalography (EEG) signals and the results have 

been applied to a number of domains such as brain-

computer interfaces (BCI; Lotte et al., 2018), emotion 

recognition (Kim et al., 2013), understanding human 

memory (Noh et al., 2014), estimating workload (Brouwer 

et al., 2012), among others.  Much of this research is 

conducted using a limited set of interaction paradigms 

(Abiri et al., 2019; Saeidi et al., 2021).  In active BCI 

systems, classification methods are used to identify specific 

brain signals consciously and purposefully generated by the 

participant.  Reactive BCI systems involves tasks where the 

experimenter has control over the presentation of stimuli 

and examines activity in predefined intervals, typically 

locked to the presentation of these stimuli.  Research on 

passive BCI focuses on the classification of brain states that 

occur within complex, operational environments such as 

driving or aviation.  Within passive BCI systems the 

sequence of events emerges as an interaction between the 

subject and the environment. These events can reflect a 

complex interplay between the cognitive process and task 

context and the uncertain timing of these events adds an 

additional challenge to their detection.  Although this 

research is often conducted within realistic situations, the 

focus of the detection is often limited to considering only a 

few, highly distinguishable cognitive states(Aricò et al., 

2016).  The ability to decode diverse, time-variable events 

has valuable implications for enabling the development of 

neuroadaptive technologies to support complex tasks and 

greater interactivity (Krol et al., 2018)  

Video games can provide a rich testbed that begin to 

bridge the gap between doing traditional EEG experiments 

in tightly controlled lab studies and the complex tasks in 

which people routinely engage every day.  In recent 

research, Anderson, et al, (2020)  decoded cognitive, 

perceptual, and motor events from EEG data gathered from 

participants playing the video game Space Fortress 

(Donchin, 1989; Frederiksen & White, 1989; Gopher et al., 

1989).  In that work, they presented a Sketch and Stitch 

method that was successful in reconstructing an entire 

sequence of actions to capture the play of a subject in a 

game.  The Sketch component of that procedure was used to 

infer a chronology of the critical events of a subject’s 

gameplay by using a hidden semi-Markov model (HSMM) 

to combine cognitive modeling and EEG data.  The critical 

events they tried to identify were 

1. Kills:  when a player succeeds in destroying fortress; 

2. Deaths: when a player’s ship is destroyed;  

3. Resets: when a player slips in trying to build up the 

vulnerability of the fortress and is reset to 0. 

They exploited the fact that such events during gameplay 

tend to produce robust EEG signals while a cognitive model 

can provide probabilities of various transitions between 

critical events as well as the distribution of intervals 

between these events.   The approach identifies the most 

probable sequence of critical events and when they 

happened.      

While Anderson et al (2020) had success identifying 

critical events in a subject’s game play, the Space Fortress 

interface accompanies these critical events by special visual 



 

and auditory effects, raising the question if this success just 

depended on detecting perceptual responses in the EEG. For 

example, the destruction of a ship was accompanied by a 

sound effect and an elaborate visual element meant to 

indicate an explosion.  In this paper, we explore the question 

of how well the method would work in a situation where 

these events occurred without the strong perceptual 

correlates.  We ran an experiment that replicated the one 

described in Anderson et al (2020) but reduced the audio 

and visual events that accompanied game play. Necessarily, 

something in the interface must change to indicate to the 

subject that the event has happened, but we eliminated 

strong visual and auditory signals. We will compare the 

results with this reduced interface to the prior results with 

the original Space Fortress interface. 

Space Fortress Game 

Figure 1 illustrates the critical elements of the game. 

Players are instructed to fly a ship between the two 

hexagons.   They are firing missiles at a fortress in the 

middle, while trying to avoid being hit by shells fired by the 

fortress. The ship flies in a frictionless space. To navigate, 

the player must combine thrusts in various directions to 

achieve a path around the fortress.   Mastering navigation in 

the Space Fortress environment is challenging; while 

subjects are overwhelmingly video game players, most have 

no experience in navigating in a frictionless environment.  

We use the Pygame implementation of Space Fortress 

(Destefano, 2010)where all actions are key presses. 

 

 
Figure 1: Snapshot of ship (nearest outer hexagon) 

shooting missile (arrow) at fortress (inside inner hexagon) . 

 

We used the Autoturn version of the game introduced in 

Anderson et al. (2019) and described in detail in that paper.  

In this variant of the game, the ship is always aimed at the 

fortress and subjects do not have to turn it.  There are only 

two relevant keys: A left-hand press of the W key to add 

thrust to the ship and a right-hand press of the space bar to 

fire at the fortress.   The ship begins each game aimed at the 

fortress, at a 9:00 starting position (Figure 1), and flying at a 

moderate speed parallel to the upper left diagonal segment 

of the outer hexagon .  To avoid having their ship destroyed, 

subjects must avoid hitting the inner or outer hexagons, and 

they must fly fast enough to prevent the fortress from 

aiming, firing at, and hitting the ship.   When subjects are 

successful the ship goes around the fortress in a clockwise 

direction.  They can destroy the fortress by shooting 

missiles at it to build up its vulnerability and then destroying 

it with a “kill shot” (two shots in rapid succession).  If the 

fortress is destroyed, it leaves the screen for 1 second before 

respawning.   If the ship is destroyed, it respawns after 1 

second in the starting position flying along the starting 

vector.  The replay site 

(http://andersonlab.net/reconstruction/) offers examples of 

game play.  

 Anderson et al. (2019) found that subjects can achieve 

relatively high and stable performance within an hour of 

playing AutoTurn (much faster than in original Space 

Fortress where subjects are also responsible for turning their 

ship among other things).  To maintain a constant challenge 

of game play, a staircase procedure decreased the separation 

between the inner and outer hexagons as subjects got better. 

Subjects played 1-minute games.   During the first 10 games 

the inner corners were 40 pixels from the center and the 

outer corners were 200 pixels from the center producing a 

width of 160 pixels. After the tenth game, the border width 

was reduced by 10 pixels if the subject had 0 or 1 deaths in 

the prior game and it was increased by 30 pixels (to a 

maximum width of 160 pixels) if they had 2 or more deaths.   

In this way the death rate in the game was maintained at 

about 1 death per 1-minute game.  For each 10 pixels the 

border is reduced, subjects get an additional 10 points for 

each fortress they destroy. Navigation becomes more 

difficult as one has to fly between narrower borders, with 

many deaths resulting from thrusting into the inner hexagon, 

a rare event with the original 160-pixel width. 

The Sketch procedure combines classification results 

from the EEG signal with information about the expected 

distribution of critical events from a cognitive model of the 

subject.   The cognitive model we use was the ACT-R 

model that was described in Anderson (2019).   We 

simulated 100 subjects by running the model 100 times on 

60 games under the same game conditions as humans to 

generate behavioral results.  We ran the model in over 

35,000 games to generate statistics used in the Sketch 

procedure. 

Methods 

Here we describe data collection, pre-processing and 

procedures. We will refer to the reduced interface 

experiment as “Experiment 2” to contrast it with 

“Experiment 1” in Anderson, et al (2020). 

Subjects 

A total of 20 subjects (6 male, 14 female) were recruited 

from the CMU population of students and researchers 

between the ages of 18 and 40.  None reported a history of 

neurological impairment.  Subjects were paid between $60 

and $75 for participation, depending on task performance.   

The duration of the experiment, including setup and task 

execution was less than 2 hours.  All participants signed a 

written informed consent form.  The experimental protocol 

was reviewed and approved by the Carnegie Mellon 

University Institutional Review Board. 

http://andersonlab.net/reconstruction/


 

Figure 2. Mean values (line) and standard errors (area around lines) per game for subjects and models as a function of game 

(a) border width; (b) points before bonuses for kills at narrow borders; (c) number of fortress destructions; (d) number of 

deaths. 

Task 

Subjects were given a verbal overview of the time course 

of the experiment and how to play the game, after which 

they interacted with the software at their own pace.  After 

reviewing instructions displayed onscreen, they played 60 1-

minute games.  Each 1-minute game yielded 1800 1/30 sec 

time frames or game ticks. The full game state is recorded 

by the software on every game tick. The record of game 

state included the keyboard (keys down/up) and all aspects 

of the display screen (direction, speed and location of the 

ship if alive, fortress orientation, presence of shells or 

missiles, etc.). 

Three changes made from the game used in Anderson et 

al (2020).   First, as already noted, we eliminated all 

explosions (visual and auditory effects).   Second, in the 

original game one auditory tone accompanied each shot and 

another auditory tone accompanied a reset.  This resulted in 

a quick double tone when there was a reset.  In this version 

to eliminate the double tone, we used one tone when a shot 

resulted in an increment to vulnerability and another tone 

when there was a reset of vulnerability.  Half of the subjects 

had one pairing of tones to the vulnerability changes while 

this was switched for the other half.  Third, we changed the 

awarding of points.  In the original game, as soon as the 

borders began to narrow (game 11) subjects received double 

the 100 points for a fortress kill.  As described above, in this 

game they received an additional 10 points for each 10-pixel 

reduction of the border width.  This change was introduced 

to keep subjects motivated to play at a higher level of 

difficulty. 

EEG Analysis 

The EEG was recorded from 128 Ag-AgCl sintered 

electrodes (10-20 system) using a Biosemi Active II System 

(Biosemi, Amsterdam, Netherlands). The EEG signal was 

recorded continuously for the entire experimental session 

and broken into 1-minute games.  Portions of the game 

periods that included poor signal were excluded. Individual 

channels within an epoch were flagged based on having 

extreme values for mean absolute deviation, drift, or range. 

Flagged channels were interpolated.   Epochs that still 

contained channels with extreme values after these steps 

were flagged and rejected. This resulted in loss of the signal 

for an average of 2.3 seconds per game for games used in 

the decoding (44.4% of the games had no lost signal).  

In order to get simple correspondence with the game state 

data, the 512 Hz data were then down-sampled to 30 Hz 

with default EEGLab anti-aliasing filtering applied.  A one-

second window around each game tick (14 game ticks 

before, the game tick, and 15 game ticks after) was used to 

classify whether a game tick contained a critical event.  

Thus each game tick had associated with it a vector of 

30*128=3840 electrode readings, representing regional 

effects, frequency effects below 30 Hz, and their 

interactions. The first 1000 components of the PCA of these 

vectors were used for classification. 

Classification 

We replicated the Sketch procedure described in 

Anderson, et al (2020).  We focused our analysis on the last 

55 games for each subject where performance is relatively 

stable while also employing the same game exclusion 

criteria used in experiment 1.  Of the 1100 games, we 

excluded 10 games because of border width or relative 

inactivity by the subjects (the one and only game where the 

staircase procedure resulted in a border width of 30 pixels, 3 

games where subjects failed to destroy a fortress without 

resetting or being killed, and 6 further games with 12 or 

fewer critical events) leaving 1090 games. 

Classification was performed on the 1000-element vectors 

produced by the PCA to identify the critical events that 

determine the critical sketch of game activity. We used a 

leave-one-game-out method where for a given target game 

of a particular subject, linear discriminant classifier training 

was done using all remaining games for that subject and all 

games from the remainder of the subjects. The classifier was 

trained to label the EEG activity vectors with the critical 

event corresponding to the game tick the vector describes.  

To reflect the point that a subject’s own data are likely the 

most relevant, the training games for each subject are 

weighted 15 times more than the games of other subjects. 

This leave-one-game-out procedure was repeated for every 

game to generate event probabilities across all 1090 games. 



 

Figure 3.  (a) EEG activity around the destruction of the fortress with the scalp profiles ranging from -4 to 4 μV. (b) EEG 

activity around the death of a ship with the scalp profiles ranging -10 to 10 μV.  (c) EEG activity around a vulnerability reset 

with the scalp profiles ranging -10 to 10 μV. Shaded areas represent a standard error of the mean calculated from the standard 

deviation of the subject means. 

  

Results 

Behavioral Results 

The time course of various performance measures over 60 

games are shown in Figure 2.  Data shown include those 

from Experiment 1 labeled as ‘Subjects Exp1’, the reduced-

interface-element Experiment 2 described above labeled as 

‘Subjects Exp2’, and the model data from 100 simulated 

subjects, labeled as Models.  Games 1-10 all had a fixed 

border width of 160 pixels between the small inner hexagon 

that contains the fortress and the outer hexagon.  After game 

10, the staircase procedure was employed: border widths for 

successive games would continue to decrease at 10 pixel 

decrements until a subject’s ship was destroyed 2 times or 

more, at which point the next game would reset to a larger 

width. 

Part a shows border width.  Subject behavior in both 

experiments results in slightly tighter border widths than 

those from model gameplay.  Considering only games 11-60 

where border width could vary according to the staircase 

procedure, Exp2 subjects attained somewhat tighter border 

widths (M = 98.2, SD = 13.46) than Exp1 subjects (M = 

107.6, SD = 15.59), t(38)=2.04, p=.049 reflecting the 

change of scoring scheme from Experiment 1.  Figure 1b 

shows canonical point scores by game.  Canonical points 

show what subjects would achieve with the original 100 

points per kill without the further bonuses they get for kills 

at narrow widths.   Points were comparable for models and 

subjects over the course of the experiment, and there was a 

not a significant difference in points scored between Exp2 

subjects (M = 627.1, SD = 122.08) and Exp1 (M = 655.5, 

SD = 106.76), t(38) = 0.782, p=.44.  A similar pattern holds 

for fortress kills shown in Figure 1c, with roughly 9.5 kills 

per game in both Exp2 (M = 9.4, SD = 1.67) and Exp1 (M = 

9.7, SD = 1.32).   Similarly, there was no difference in ship 

deaths (Figure 1d) between Exp2 (M = 0.9, SD = 0.12) and 

Exp1 (M = 0.9, SD = 0.13), both averaging just under 1 

death per game which was the goal of the staircase 

manipulation. 

Generating a Sketch 

While the above performance measures show that 

behavioral performance is comparable between the 

enhanced and reduced versions of the game, the essential 

question we want to answer is whether and how features of 

the gaming interface affect the ability of the Sketch 

procedure to accurately assign the identity and timing of 

critical events throughout a game.  There are five critical 

events that occurred during gameplay: 

1. Kills. Player destroys the fortress and scores 100+ points.  

2. Fortress Respawns. 1 second after the fortress is killed, it 

reappears and normal gameplay can resume. 

3. Deaths.  The player’s ship is destroyed and the player 

loses 100 points. 

4. Ship Respawns.  The ship is absent for 1 second after 

death, then reappears and normal gameplay can resume. 

5. Resets. If the interval between ship missile firing is less 

than 250ms and the vulnerability is less than 11, the 

fortress vulnerability will be set back to zero and the 

subject must begin rebuilding the vulnerability from 

scratch. 

 

Table 1: Interface Elements for Game Events 

 Experiment 1 Experiment 2 

Event Hear See Hear See 

Ship Death Whoosh Explode   

Fortress Kill Whoosh Explode   

Missile Fired HF Beep    

Fortress Fired LF Beep <>  <> 

Vuln Increase   Beep 1/2  

Vuln Reset Beep  Beep 2/2  

 

Table 1 shows the interface elements associated with 

various game events in both experiments.  Experiment 2 has 

eliminated all unnecessary sounds and visual effects.  

Missile and shell firing are still accompanied by the visual 

display of the missile or shell flying across the space. 

Increments and decrements of vulnerability are indicated by 

distinctive tones so the subject does not have to be 

constantly looking at vulnerability on a different part of the 

screen.  In addition, ship deaths and fortress deaths are 



 

accompanied by a 1-second removal of the fortress or ship 

so the subject does not waste actions.  

While the classification component of the Sketch 

procedure is multivariate in nature, it is useful to have a 

sense of the mean EEG activity around events that will be 

classified.  We show the activity around a subset of critical 

events in Figure 3.  Each of the panels shows a full second 

of activity (the same time-window used in the classification 

procedure), from 500 ms before the event to 500 ms after. 

There seems to be a post-event positivity that is common 

to kills, deaths, and resets in both experiments, though in the 

current experiment, kills show only a return to baseline from 

negativity as opposed to positivity.  Consistent with results 

reported in Anderson, et al (2020), the magnitude of this 

positivity in both experiments varies with the rarity of the 

event.  Kills are most frequent and show the smallest 

positivity while deaths are the least frequent event and show 

the greatest return to positivity.  This is consistent with what 

would be expected from a P300 (Polich, 2012).   

Classification Results 

As in Anderson et al (2020), the leave-one-game-out 

cross validation procedure to predict labels for the 5 classes 

of critical events also requires inclusion of a sixth class 

containing null events.  To avoid being overwhelmed by 

null events, for every critical game tick in a single game, 2 

non-critical game ticks were chosen randomly to include in 

the classifier training phase.  The overall discriminability d-

prime was 1.76. Average accuracy was 54.0% and the 

average pairwise AUC was .915.  This was slightly lower 

than Anderson et al. (2020) where d-prime was 2.0, average 

accuracy was 59.6% and the average pairwise AUC was 

.942. 

As detailed in Anderson, et al (2020), the classification 

results themselves would not give us very good critical 

event sketches.  For example, many of the null events are 

labeled as being critical events.    Further, even if we 

managed to achieve unrealistically good classification 

accuracy, an unconstrained critical event sketch would 

contain sequences of events that are unlikely within the 

dynamics of the Space Fortress game. We need a way to tell 

the real critical events from the false labels and sequence 

events realistically.  The Sketch method was developed for 

this purpose.   This procedure combines statistics about 

what critical events are likely to occur when.  This is 

calculated from a large library of model runs with output 

from the classifier to produce a critical sketch.  The model 

games are used to estimate probabilities for a critical event 

transition matrix as well as latency distributions for time 

elapsed between events. The transition matrices and latency 

distributions are used to parameterize an HSMM. 

The HSMM can efficiently combine the model-based 

statistics and conditional probabilities from the EEG 

classifier to estimate the most likely sequence of events in a 

game.  Any sequence of events can be denoted a1, a2, …, an 

occurring at game ticks t1, t2, …, tn where a1 is game start 

(and so t1 is game tick 1), an is the end (tn is the 1800th game 

tick), and a2, …, an-1 are fortress kills and respawns, ship 

deaths and respawns, and vulnerability resets.  Anderson, et 

al (2020) derived the following proportionality describing 

the probability of any such sequence relative to the 

probability of other sequences: 

 
where trans(ai,ai+1) is the probability of transition 

between the events ai and ai+1 estimated from the model 

runs,  f(ti+1 - ti| ai, ai+1) is the probability of the ti+1 - ti game 

ticks between the events ai and ai+1, instantiated with the 

distributions computed from the model runs, and 

P(EEG(ti+1, ti+1) | ai+1) is the conditional probability of the 

EEG signal for this period if it ends in ai+1 where the 

conditional probabilities are generated from the classifier. 

The Viterbi algorithm (Rabiner, 1989) for hidden semi-

Markov models was used to find the assignment of events 

(event identity and timestamp) that maximized Prob(a1, a2, 

…, an).  This produced for each game a critical event sketch: 

a set of inferred events and the time ticks when they 

occurred.  We use two measures to evaluate the goodness of 

match between sketch and actual game events: recall and 

precision (Buckland & Gey, 1994).  We focus only on kills, 

deaths and resets (ignoring respawns of ship and fortress as 

they were directly tied to kills and deaths with a 1 second 

lag).  The recall measure considers all actual game events 

that occur and the identity of the closest sketch event to 

each.  If the identity of the closest sketch event matched the 

actual game event, the assigned recall score would be the 

distance in time ticks between them.  If the sketch and 

actual event time tick were identical, the score would be 0.  

If the sketch event was further than 2.5 seconds (75 time 

ticks) away, or if the identity of the sketch event did not 

match, a score of 75 was assigned.  The precision measure 

used the same scoring procedure but was anchored to 

predicted sketch events and evaluated match to the closest 

game events. 

 
Figure 4: Event placement rating distributions for both 

experiments and chance performance. 

   



 

Figure 4 shows the distribution of recall and precision 

scores for Experiments 1 and 2 and provides a comparison 

to chance (reconstructions randomly paired with games).  

The mean recall and precision was 14.1 and 11.8 for 

Experiment 1, 18.4 and 18.5 for Experiment 2, and 48.1 and 

47.0 for chance.  While the reconstructions for both 

experiments are far better than chance, the difference in 

recall is significant (t(38)=2.25, p< .05) as is the difference 

in precision (t(38)=2.85, p <.01). 

Conclusion 

A straightforward conclusion seems to emerge when 

comparing sketch results from the embellished Experiment 

1 to relatively impoverished Experiment 2:  While there 

remains enough information in the cognitive response to 

events to achieve a fairly high-quality sketch of the events 

in Experiment 2, the sketch accuracy is somewhat lower 

than in Experiment 1, reflecting the slightly poorer 

classification performance, likely a result of reduced game 

feedback elements. As Figure 2 shows, the current ACT-R 

model only approximately matches subject performance.  A 

direction for improvement of reconstruction in either 

experiment would be a further improvement in that model. 
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