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Abstract

Model convergence is an alternative approach for evaluating
computational models of cognition. Convergence occurs when
multiple models provide similar explanations for a phenomenon.
In contrast to competitive comparisons which focus on model
differences, identifying areas of convergence can provide evi-
dence for overarching theoretical ideas. We proposed criteria
for convergence which require models to be high in predictive
and cognitive similarity. We then used a cross fitting method to
explore the extent to which models from distinct computational
frameworks—quantum cognition and the cognitive architecture
ACT-R—converge on explanations of the interference effect.
Our analysis revealed the models to be moderately high in pre-
dictive similarity but mixed for cognitive similarity. Though
convergence was limited, the analysis suggests that interference
effects emerge from interactions between uncertainty and the
degree to which an individual relies on typical cases to make
decisions. This result demonstrates the utility of convergence
analysis as a method for integrating insights from multiple
models.
Keywords: ACT-R; Quantum cognition; Interference effects;
Model convergence

Introduction
Model comparison often proceeds as a zero-sum game in
which two or more models offering different explanations
make opposing predictions. The winner of such competitions
is assumed to offer a more convincing representation of the
underlying cognitive processes. Although competitive compar-
isons can be useful to varying degrees, one potential limitation
is that one may overlook areas of convergence by focusing
exclusively on differences between models. Two models may
point to similar conclusions for a particular empirical phe-
nomenon even though they may differ in other regards. One
important benefit of convergence is that confidence in an ex-
planation will increase when two models are in agreement.
As an example of convergence, two distinct computational
frameworks, one based on the Adaptive Control of Thought-
Rational (ACT-R) and the other based on the drift diffusion
model—provided similar explanations for the deleterious ef-
fect of sleep loss on performance. Namely, they both explain
a reduction in the signal-to-noise ratio and a reduction in re-
sponse inhibition (Walsh et al., 2017).

Convergence offers an alternative approach for evaluating
what models reveal about human cognition (Gunzelmann,

2019). The present study extends the existing work by elaborat-
ing upon the definition of convergence and its implications for
theoretical correspondence. We then conduct an exploratory
evaluation of the extent to which two distinct models of inter-
ference effects—an existing quantum cognition model and a
model developed in ACT-R—converge on conclusions consis-
tent with a single theoretical perspective.

Model Convergence

As shown in Figure 1, models can be compared along two
orthogonal dimensions: predictive similarity and cognitive
similarity. Predictive similarity is the degree to which the pre-
dictions of two models follow the same pattern. At minimum,
we require the predictions to follow the same qualitative pat-
tern, i.e., both models predict an effect in the same direction.
Cognitive similarity is defined as the degree to which two
models posit similar mental representations (i.e., the content
and organization of information about the external environ-
ment) and/or cognitive processes (i.e., how information is
transformed, manipulated, and combined) that are relevant for
a particular empirical phenomenon. Although this space is
continuous, it can be helpful to refer to prototypical examples
or describe the space more coarsely as quadrants. Conver-
gence occurs when two or more models are highly similar
along both dimensions.
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Figure 1: Four points in the space spanned by predictive simi-
larity and cognitive similarity. Point A represents competitive
comparisons and Point D represents convergence.



The left half of Figure 1 reflects so-called “zones of con-
tention” where competing models propose different mental
representations and/or cognitive processes to explain an em-
pirical phenomenon (McClelland, 2009). At Point A in the
bottom-left quadrant, critical tests can distinguish between
competing models on the basis of their opposing predictions.
By contrast, for Point B in which predictions are similar, dif-
ferent mental representations and cognitive processes cannot
be distinguished on the basis of their predictions. Indeed,
such ambiguity often leads to the development of the critical
tests conducted in bottom-left quadrant, a cycle that can re-
peat itself many times (Gunzelmann, 2019). The right half
represents cases in which models are cognitively similar and
thus propose similar mental representations and/or cognitive
processes. Point C in the bottom-right quadrant represents
an unusual situation in which two models high in cognitive
similarity yield differing predictions. In this case, the mod-
els provide contradictory evidence for a common explanation.
Point D in the top-right quadrant represents the case where
models converge on a common explanation: both models rely
on similar mental representations and/or cognitive processes
and make similar predictions. When convergence occurs, we
find more evidence for an explanation than we would other-
wise. We believe viewing model comparisons through the
lens of convergence adds clarity to theoretical implications
and may provide additional evidence for an overarching the-
ory. By contrast, the competitive approach seeks to refute
one of the models. Although both approaches have different
goals, taken together, they offer complementary methods for
evaluating theoretical support (Gunzelmann, 2019).

Current Application
We explore whether quantum cognition and ACT-R provide
converging explanations of the interference effect. Interfer-
ence effects emerge when uncertainty about an event changes
the marginal probability of a subsequent decision, resulting
in a violation of the law of total probability (Wang & Buse-
meyer, 2016). The models we investigated derive from highly
disparate computational frameworks with strong empirical
support. The belief-action entanglement model is based on
the mathematical formalism of quantum probability which
has been used to explain several empirical phenomena where
models based on classical probability generally fail (Wang &
Busemeyer, 2016). By contrast, ACT-R is a cognitive archi-
tecture in which cognition emerges from interactions between
specialized information processing modules for declarative
and procedural memory, perception, and action among oth-
ers (Anderson et al., 2004). Given that both frameworks have
withstood many rounds of empirical testing, one might expect
points of convergence to emerge.

Categorization-Decision Paradigm
One popular paradigm for studying interference effects emerg-
ing from the interactions of categorization and decision mak-
ing is the categorization-decision paradigm (Wang & Buse-
meyer, 2016). On each trial, a face from a “good” category

or a “bad” category is presented, and participants must decide
whether to attack or withdraw. Each face consisted of either a
g-type or b-type feature, which were typically associated with
the good category or bad category, respectively. Further, par-
ticipants were typically rewarded for attacking a bad category
and withdrawing from a good category. However, these asso-
ciations were probabilistic, and atypical associations occurred
in some trials.

Uncertainty about the category was manipulated across
three conditions to elicit an interference effect. In the decision-
only (d) condition, no category information was provided
prior to the decision to act, and categorization was presumed to
occur implicitly (Wang & Busemeyer, 2016). In the categorize-
then-decide (cd) condition, participants were asked to self-
categorize the feature then decide upon an action. In the third
explicit-categorization (xd) condition, the true category was
provided prior to the action decision.

Belief-Action Entanglement Model
The belief-action entanglement (BAE) model is a quantum
cognition model of interference effects in categorization and
decision making. A full mathematical description of the model
can be found in Wang & Busemeyer (2016). In the BAE model,
states evolve within a finite Hilbert space H (N-dimensional
universal vector space) across a field of complex numbers.
The potential of a state is given by the unit-length vector ψ.
A defining feature of quantum systems, to include cognitive
systems, is that a measurement changes the state. Conse-
quently, transitions occur when ψ is measured, e.g., a feature
is categorized or an action is selected.

The BAE represents category-action events as basis states
where GW symbolizes the combined event of categorizing a
feature as good then deciding to withdraw. The initial state
ψ f is uncertain and superposed over the four possible basis
states, ψ f = [GW,GA,BW,BA]⊤. Basis states are assigned
amplitudes such that the square magnitude gives its prob-
ability: |ψGW|2 = Pr(GW). The parameter j governs the
probability a b-type or g-type feature will be judged as be-
longing to either category, e.g., for a b-type feature, ψ f =

ψb =
1
2

[√
1− j,

√
1− j,

√
j,
√

j
]⊤.

Prior to action evaluation, the state remains in the super-
posed ψ f in the d condition. In cd and xd, the state transitions
to either being in the good or bad category. After transition-
ing to the bad category, as an example, the state is updated
to ψ f −→ ψb =

1
2 [0,0,1,1]

⊤, where the latter values represent
BW and BA and the state is only superposed over the actions.

During action evaluation, the state transitions according to
the reward rate and utility parameters which influence the prob-
ability of a action given a feature and category. For example,
µb,b is the utility for attacking a b-type feature categorized as
bad. The transition to the final action state is computed using
a separate unitary matrix for each feature type. When the cate-
gory is ambiguous as in cd and d, the transition includes the
entanglement parameter γ which amplifies amplitudes for typ-
ical category-action events, e.g., GW and BA, and attenuates



amplitudes for atypical events, e.g. GA and BW. Alternately,
γ has no effect in xd because the true category is known. Con-
sequently, the BAE model predicts that interference effects
emerge from differences in the utilities for each feature type
and the influence of γ on uncertain states.

ACT-R Model
We developed a memory-based ACT-R model of the inter-
ference effect. and focus our description on the declarative
memory system.

Declarative Memory
In ACT-R, the basic unit of declarative knowledge is a set of
slot-value pairs called a chunk: cm = {(si,vi)}i∈Im

, where si
and vi are the slot and value of pair i, and Im is the index set for
slot-value pairs of chunk m. We will use the set Qm = {si}i∈Im
to denote a set of slots (e.g., domain) in cm. The mapping from
slots to values is defined as cm(s) = v, where v is null if the
chunk does not include s.

The set of slots for each chunk is defined as Q =
{feature,category,action}, where the feature can be b-type
or g-type, the category can be good or bad and the ac-
tion can be attack or withdraw. Declarative memory M
consists of 23 = 8 chunks formed by permuting the possi-
ble values for feature, category and action. For example,
cgba = {(feature,g-type),(category,bad),(action,attack)} is
a chunk for attacking a g-type face in the bad category. We
will use a three letter abbreviation, such as gba, to denote the
feature, category, and action values of a chunk.

Memory Activation
Each chunk is associated with an activation value represent-
ing its ability to be retrieved. As activation increases, the
probability of retrieval increases. We omit the base-level learn-
ing mechanism because learning was not observed in Wang &
Busemeyer (2016). Activation is defined as am = βm+ρm+εm
where β is the base-level constant, ρ is the partial matching
term, and ε∼ logistic(0,s) is logistically distributed noise with
scalar parameter s. The partial matching mechanism allows
chunks that do not match the retrieval request r to be retrieved
as a decreasing function of mismatch. The retrieval request is
treated as a chunk with slot-value pairs. We use a binary mis-
match penalty function: ρm =−δ∑q∈Qr I(cm(q),r(q)), where
δ is the mismatch penalty parameter, Qr is the set of slots
in the request, and I is an indicator function which returns 1
when both inputs are not equal and returns 0 otherwise.

Retrieval Process
Upon stimulus presentation, a retrieval request r based on all
available information is submitted to declarative memory. For
example, in the d condition, only the feature is available, but in
the xd condition both the feature and the category are available.
The chunk with the highest activation value above the retrieval
threshold τ is retrieved and determines the eventual response.
To simplify the model, we set the retrieval threshold to −10

under the assumption that chunks are sufficiently active to be
retrieved.

Model Predictions
In the predictions for each condition below, we use A to denote
a random variable for the action, F to denote a random variable
to denote the feature, and C as a random variable to denote the
category.

d condition Participants decided to attack or withdraw
from a face with feature f . The retrieval request is r =
{(feature, f )}. We will define Rd as the set of chunks that
map to a decision to attack Rd = {cm ∈ M : cm(feature) =
r(feature),cm(action) = attack}. In other words, Rd is the set
of chunks that match feature f and have a value “attack” for
the action slot. The approximate probability of attacking is
computed using the soft max function (Weaver, 2008):

Pr(A = a | F = f ) =
∑k|ck∈Rd

eµk/σ

∑ j|c j∈M eµ j/σ
(1)

where σ = s
√

2 and the expected activation is E[am] = µm.

xd condition Participants were told the true category v for a
face with feature f then decided to attack or withdraw, leading
to the retrieval request r = {(feature, f ),(category,v)}. The
set of chunks that map to the decision to attack is defined
as: Rxd = {cm ∈ M : cm(feature) = r(feature),cm(category) =
r(category),cm(action) = attack}. The probability of attack-
ing a face with feature f in category v is given by:

Pr(A = a | F = f ,C = v) =
∑k|ck∈Rxd

eµk/σ

∑ j|c j∈M eµ j/σ
(2)

cd condition Participants categorized a face with feature
f as good or bad followed by a separate response to attack
or withdraw. The retrieval request for the categorization is
rc = {(feature, f )}. The set of chunks that map to a cate-
gory response v is defined as Rcd,c = {cm ∈ M : cm(feature) =
rc(feature),cm(category) = v}. The probability of categoriz-
ing face with feature f as v is given by:

Pr(C = v | F = f ) =
∑k|ck∈Rcd,c

eµk/σ

∑ j|c j∈M eµ j/σ
(3)

The judged category v is incorporated into the retrieval request
for the subsequent decision: rd = {(feature, f ),(category,v)}.
The set of chunks that map to the decision to attack is the
same as in the cd condition: Rxd = Rcd,d, which implies that
the probability of attacking a face with feature f categorized
as v is equal to equation 2 from the xd condition.

Cross Fitting
To measure predictive and cognitive similarity, we used a
cross fitting method inspired by Donkin et al. (2011). In
our study, predictive similarity is measured by comparing the
qualitative predictions of the two models, whereas cognitive



similarity is measured by assessing the mapping of parameters
from one model to another. Our cross fitting method entails
two steps. First, we generated predictions from the BAE
model by varying one parameter at a time while holding the
others constant at their best fitting values reported in Wang
& Busemeyer (2016). Second, we fit the ACT-R model to
the predictions of the BAE by minimizing Kullback-Leibler
divergence (KLD; Kullback & Leibler, 1951). KLD is the
amount of information lost by using one distribution in place
of another, i.e., how much information is lost when using
the best fit ACT-R model to represent the BAE mode. One
advantage of comparing two probability distributions using
KLD instead of fitting a model to a finite sample of simulated
data is that it eliminates the role of noise in the mapping.

We selected three parameters on the basis of their qualita-
tively distinct roles in the model: the entanglement parameter,
γ, the category judgement parameter, j, and a utility parameter,
µb,b. Each parameter was varied across 20 equally spaced val-
ues: γ ∈ [0,2], j ∈ [.01, .99], and µb,b ∈ [−1,1]. We set s = .2
and base level constants βbbw = 0.0 and βggw = 0.2 to ensure
identifiability of the model parameters. We used differential
evolution to minimize KLD.

Convergence Predictions
Psychologically, interference effects can result from increased
on reliance typical associations in the absence of certain in-
formation (Fiske & Taylor, 1991). For example, βbba and µb,b
represent the influence of typical associations between a face
with a b-type feature in the bad category and the decision to
attack. The strength of influence varies with certainty about
the category. If convergence is present, the BAE and ACT-R
accounts of these processes should be relatable.

First, we expect typical associations to strengthen the prob-
ability to attack, Pr(A), for b-type features in both models,
irrespective of category certainty. In the BAE, this should be
most evident as µb,b increases. In ACT-R, we expect to observe
a comparable increase βbba with a commensurate decrease in
βs for atypical associations according to equations 1 and 2.
Second, we expected category uncertainty in the d condition to
moderate the Pr(A). In the BAE, changes in j should vary the
influence of typical associations. Because the retrieval request
only contains the feature, a comparable process in ACT-R
should systematically influence βs for typical categories and
actions according to equation 1.

Third, we expect γ and δ parameters to modulate the influ-
ence of utility and β parameters, respectively. In particular,
we expect γ to amplify the effect of typical associations for
the Pr(A), but only with category uncertainty in cd and d.
In ACT-R, the analogous effect should occur at higher val-
ues of δ which increase the probability of selecting an exact
match.Consequently, we expect the influence of βbba to be
amplified while attenuating the influence of atypical βs.

Results
We assess predictive and cognitive similarity between the BAE
and ACT-R for each of the three BAE parameters to determine

Figure 2: Best fitting values for the base level constant (β)
parameters and the mismatch penalty parameter (δ) for ACT-R
as a function of γ from the BAE model.
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Figure 3: Response probabilities for the BAE (red) and ACT-R
(black) models as a function of γ paneled by response category.
Subplot titles give condition, face type, category.
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whether the models converge on similar explanations of the
interference effect.

The entanglement parameter γ. Predictive similarity: for
both models, the response probabilities follow qualitatively
similar patterns in cd and d, a distinction more pronounced in
cd than d (see Figure 3). However, Pr(A) patterns are qualita-
tively dissimilar in xd. Specifically, the BAE model is invariant
to γ, as intended, whereas as ACT-R simply reproduces pattern
of probabilities in cd. This is not surprising as equation 2
computes the Pr(A) in both xd and cd. The results indicate
predicative similarity is moderately high for ambiguous cate-
gory knowledge but low for unambiguous categorization.

Cognitive similarity: for simplicity, we focus on mappings
where γ is less than 1 (see Figure 2). Though the pattern
is not strictly linear, decreases in γ and increases in δ favor
typical associations, as predicted. In ACT-R specifically, the



Figure 4: Best fitting values for the base level constant (β)
parameters and the mismatch penalty parameter (δ) for ACT-R
as a function of j from the BAE model.

0.00 0.25 0.50 0.75 1.00
j

−1
0
1
2
3
4 gga

gba
gbw
bga
bgw
bba
δ

Figure 5: Response probabilities for the BAE (red) and ACT-R
(black) models as a function of j paneled by response category.
Subplot titles give condition, face type, category.
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process entails expected interactions with βbba as well as the
atypical βgbw. As a result, we conclude the models exhibit
high cognitive similarity for modulating bias.

The category judgement parameter j. Predictive simi-
larity: The BAE and ACT-R produced identical distributions
for Pr(A) in d (see Figure 5). By contrast, Pr(A) in xd and
cd remained invariant in both models, indicating they were
constrained to the d condition, as expected. All told, these
patterns indicate high predictive similarity.

Cognitive similarity: The relatively linear decreases in δ

and atypical β values with increases in the j parameter reveal
an unexpected mapping between the two models (see Fig-
ure 4). In the BAE model, the Pr(A) derives from an uncertain
superposition state over possible outcomes and is systemati-
cally modulated by j. In contrast, the ACT-R model is less
systematic and it is not clear the mental states represented by

parameter interactions. Specifically, the Pr(A) increases at
high values of δ, which approximates increasing bias in the
decision, and also at low values of δ, ostensibly represent-
ing indecision between alternatives. Because ACT-R’s varied
account cannot easily be reconciled with the BAE account,
we conclude the models are low in cognitive similarity when
category is uncertain and not made explicit.

The utility parameter µb,b. Predictive similarity: Visual
inspection of Figure 7 indicates that predictive similarity is
high when µb,b is varied. The predictions exhibit some dis-
crepancy for b-type faces in the bad category in the xd and
cd conditions. Nonetheless, the predictions are qualitatively
similar throughout.

Cognitive similarity: The varied behavior of ACT-R param-
eters across the range of µb,b was surprising (see Figure 6).
In the BAE, µb,b exerts a relatively linear effect on the Pr(A),
as expected. In ACT-R, the Pr(A) varies with parameter in-
teractions when µb,b is above versus below 0. Specifically,
when µb,b > 0, βbba amplifies the Pr(A) when an exact match
is more probable (e.g., at higher δ values), in line with our
expectations. Alternatively when µb,b < 0, the atypical βgbw
increasingly attenuates the Pr(A) when a mismatch becomes
more likely (e.g., at lower δ values) which was neither ex-
pected nor a predictable function of δ. Because only a portion
of ACT-R interactions are analogous µb,b’s function, cognitive
similarity between the models was deemed moderate, at best,
for the influence of typical associations.

Figure 6: Best fitting values for the base level constant (β)
parameters and the mismatch penalty parameter (δ) for ACT-R
as a function of µb,b from the BAE model.
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Discussion
The goal of the present study was two-fold. First, we elab-
orated upon the definition of model convergence. Second,
we explored the extent the BAE, a model based in quantum
cognition, and a model based in ACT-R provide converging
explanations of the interference effect. Our criteria for conver-
gence required models be both high in predictive and cognitive
similarity. For interference effects, we expected similarities to
emerge from interactions between category certainty and the
influence of typical associations on decisions.

Both models exhibited moderately high predictive similarity.
Predictions were more similar when the category was uncer-
tain (cd and d) but diverged when the category was certain
(xd). In ACT-R, the divergence can be attributed to the partial



Figure 7: Response probabilities for the BAE (red) and ACT-
R (black) models as a function of µb,b paneled by response
category. Subplot titles give condition, face type, category.
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matching mechanism which is constrained to implementing
penalties for mismatches in slot-value pairs. The architecture
does not permit penalizing mismatches at the condition level.
Hence, when the category was included in the retrieval request,
the model was unable to differentiate between an uncertain
category in cd and a true one in xd. The BAE can account for
unambiguous category knowledge because the entanglement
parameter γ was not applied to state transitions in xd (Wang &
Busemeyer, 2016).

Cognitive similarity between the two models was mixed.
The BAE’s γ parameter and ACT-R’s mismatch penalty δ mod-
ulated the influence of typical and atypical associations in
comparable ways. Overall, we found the expected relationship
between µb,b and βbba. However, for µb,b and j, ACT-R pa-
rameter mappings were by determined by the ratio of βs (see
equations 1, 2, 3) and varying values of δ which at times ap-
peared unsystematic and difficult to predict. The variability is
surprising given that both the BAE and ACT-R models produce
interference effects and can account for violations of total prob-
ability. One explanation for the unexpected mappings may be
due to the idiosyncrasy of a particular implementation rather
than the function of partial matching. If so, then cognitive
similarity may be higher than assessed.

Indeed, while useful, our cross fitting analysis may have
obscured areas of cognitive similarity. First, our mappings
were asymmetrical such that ACT-R parameters were cross
fitted as a function of the BAE parameters but not the other way
around. However, ACT-R’s fluctuating parameter interactions
pose a challenge for symmetrical mappings, and it is unclear

whether mapping to a single parameter would be sufficient to
evaluate convergence. Second, our mappings centered on best
fitting values, ergo limiting the scope of our analysis; the full
space of potential convergence was not explored. Evidence
for similarity would be greater if the relationships hold across
a larger sub-space of parameters. Even so, our approach of
evaluating parameters near the best fitting is a reasonable
starting point.

With respect to supporting a single theoretical perspective,
our analysis was informative, even as convergence was limited.
Had we conducted a competitive comparison, the theoretical
contribution of the losing model might have been eclipsed.
As it stands, not only have we accumulated evidence for the
psychological processes underlying interference effects, but
our analysis identified areas where future research can further
elucidate how and when the human mind is influenced by the
strength of beliefs in uncertain situations.
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