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Abstract

Mind-wandering occurs as emotional arousal decreases, which
is related to the level of mastery of the current task. As a
worker becomes more proficient in a task, the cognitive re-
sources required to perform the task decrease. Then, sur-
plus resources emerge and are naturally directed to “default-
mode thinking,” which people usually engage in outside the
task. As mind-wandering continues, this default-mode think-
ing becomes more active and affects the task performance.
In this study, we describe this process by combining the ba-
sic functions of the cognitive architecture Adaptive Control of
Thought-Rational (ACT-R). The chunk activation mechanism
represents the on- and off-task thinking loops. Furthermore,
we introduce stochastic fluctuation in the chunk activation to
change the transition probability between these loops. This
fluctuation is assumed to be driven by parasympathetic ac-
tivity, which increases over time and is suppressed by novel
stimuli. To develop this physiological change, this study uses
the ACT-R temporal module. Simulations using these modules
demonstrate the inverse U-shaped relations between task per-
formance and task continuation. Such a process is consistent
with theories of optimal levels of arousal.

Keywords: optimal level of arousal, homeostasis, mind-
wandering, cognitive resource, ACT-R

Introduction
People often think and dream about things unrelated to the
current task. This state is called mind-wandering and is re-
ported to occur more than half the time humans are awake
(Killingsworth & Gilbert, 2010). Therefore, mind-wandering
can be considered the normal state (default mode) of humans.
Although mind-wandering is assumed to promote creative
thinking (Baird et al., 2012), it leads to a decline in task per-
formance and triggers accidents caused by distraction from
the task.

Mind-wandering is one phenomenon caused by decreased
emotional arousal during a task. A similar process is some-
times expressed as mental fatigue, boredom, or habituation.
These wide varieties of mental activities are related to an op-
timal level of arousal for better task performance (Yerkes &
Dodson, 1908; Hebb, 1955; Easterbrook, 1959). Some re-
searchers have proposed that the optimal level of arousal is
influenced by the difficulty of the task (Oxendine, 1970; Csik-
szentmihalyi, 1990). Both excessive and insufficient arousal
levels for the current task difficulty negatively affect perfor-
mance. In other words, the task performance is related to
arousal level by an inverse U-shaped function, the peak of
which shifts depending on the task’s difficulty. This inverted

U-shaped curve is considered to apply to changes in task per-
formance over time. As the task proficiency progresses, the
task performance increases and becomes easier for the cur-
rent workers. Simultaneously, the level of arousal (atten-
tion or cognitive resources) required to accomplish the task
decreases. Then, surplus cognitive resources emerge, and
they are naturally directed to “default-mode thinking,” which
workers prefer to use in their everyday life. As this process
repeats, they lose motivation to continue the task, and their
task performance gradually degrades. This transition even-
tually creates a inverse U-shaped curve relating the attention
directed to the task (the arousal level required by the task)
and the task continuation (similar mechanism is proposed by
Shenhav et al. (2013)).

Many studies have been conducted concerning human cog-
nitive functions related to the theory of the optimal level of
arousal. However, detailed computational models describing
the changes in performance and arousal level over time have
not been fully developed. In this study, we represent this pro-
cess using a cognitive architecture, ACT-R (Adaptive Con-
trol of Thought-Rational; Anderson, 2007). Like many other
cognitive architectures (Kotseruba & Tsotsos, 2018 for a re-
view), ACT-R provides modules corresponding to functions
used repetitively across several tasks. ACT-R has multiple
modules involved in learning tasks, and the combination of
these modules can represent the complex nonlinear relation-
ships between mastering the task and task motivation. Based
on this idea, this study tries to describe these arousal changes
by integrating the primitive cognitive modules provided in
ACT-R.

In the following section, we will introduce related studies
concerning the abovementioned goal of the study. Follow-
ing this, the target human behaviors concerning the optimal
level of arousal will be presented. Then, the ACT-R model
integrating several primitive cognitive components to simu-
late these specific behavior patterns will be described. The
simulation results will present a case of a U-shaped task per-
formance change. In the final section, we will discuss the
implications and limitations of this study.

Related Works
This study aims to model the optimal arousal level by com-
bining primitive functions in ACT-R. This section presents
two directions of previous studies: a human physiological



mechanism and research on ACT-R.

Computational Models of Human Homeostasis

Physiological processes drive human arousal. Therefore, the
optimal level of arousal described in the previous section can
be interpreted as the maintenance of homeostasis in biologi-
cal systems, which is a self-regulating process that fluctuates
to maintain its optimal state (Billman, 2020; Cannon, 1929).
Because of homeostasis, organisms can adapt to changing en-
vironments.

Computationally, homeostasis has been explained by the
theory of predictive coding, also known as the free energy
principle. Predictive coding is the concept that the brain min-
imizes the prediction error between sensory signals and in-
ternal prediction signals by which the brain perceives the en-
vironment (Friston, 2010). An organism is assumed to de-
sire the minimization of long-term prediction errors caused
by mismatches between predictions from experience and per-
ceptions of current conditions. Mismatches also decrease as
the organism masters the task. Thus, predictive coding de-
scribes human behavior in terms of a balance between min-
imizing the prediction error for the task and increasing the
prediction accuracy. This relationship is also compatible with
the exploration-exploitation relation discussed in the study of
reinforcement learning (Sutton & Barto, 1998).

We consider that the above concepts of homeostasis and
prediction errors explain the inverted U-shape of arousal level
and task performance. Continuation of the same task leads to
the saturation of prediction errors and increases the desire to
explore new environments. However, the theory of homeosta-
sis has difficulty describing the process of arousal changing
over time. To solve this problem, we review the models de-
veloped using ACT-R.

ACT-R Models Regarding Arousal Change

Recently, some researchers have developed mind-wandering
models using the activation mechanism of ACT-R. Van Vugt
et al. (2015) implemented a model that recalls memories un-
related to the task while the task is being executed. Through
simulations using this model, they represented how the task
continuation induces mind-wandering and how it affects the
task performance.

Other studies have focused on fatigue, which is also closely
related to arousal changes over time. Gunzelmann et al.
(2009) constructed a model representing the effects of fa-
tigue on the execution of procedural memories. Specifically,
they manipulated the parameters relating to the computations
of utilities for production to represent the degree of fatigue.
Gunzelmann et al. (2012) also constructed a mechanism for
fatigue in memory activation, which affects the success of
memory retrieval during the task. These changes in sub-
symbolic parameters over time affect the performance of the
task and can define a inverse U-shaped curve representing
the relation between the task continuation and reaction time
(Atashfeshan & Razavi, 2017).

Figure 1: Task interface. Screenshot of task window (left)
and overall view of the line (right).

However, these studies have not explicitly discussed the
correspondence of these parameter changes to human physio-
logical mechanisms. Concerning the logic behind these mod-
els, Ritter (2009) defined emotion as physiological substrates
affecting cognitive parameters, such as activation. This idea
has been instantiated in ACT-R/Φ (Dancy et al., 2015), which
combines cognitive processes in ACT-R with physiological
mechanisms. Although this ACT-R extension successfully
demonstrates the complex dynamics that emerge from in-
teractions between physiology and cognitive components, it
does not explain how those relations change over time.

As described in the first section, mind-wandering can be
assumed to be a side effect of mastering a task. From this
viewpoint, cognitive models of skill acquisition should be in-
tegrated with the models of arousal changes. Several compu-
tational models (Anderson et al., 2019; Kim & Ritter, 2015)
has been proposed in ACT-R to represent a nonlinear the-
ory of mastery (Fitts, 1964). Specifically, Anderson et al.
(2019) recently proposed an ACT-R module enabling master-
ing primitive perceptual and motor coordination. We consider
that an integrated account of optimal arousal theory can be
developed using this module.

In summary, ACT-R has been used for various cognitive
function models in different situations. By referring to these
studies, we believe that it will be possible to construct a de-
tailed model for the target of this study.

Human Data
Objective
Before presenting our model, this section presents data con-
cerning changes in human arousal in a simple perceptual
and motor task. To collect data from various individu-
als, we recruited participants from a crowdsourcing service
(Lancers.jp).

Task
We set up a line-following task (Maehigashi et al., 2013) to
examine fluctuations in arousal. Figure 1 shows the task inter-



face. A polyline displayed on the screen automatically scrolls
from top to bottom by one pixel every 40 ms (25-fps screen
updates). The participants were required to follow the poly-
line (stay online) by moving the circular object left or right.

We chose this task because there is a publicly available
ACT-R model (Morita et al., 2020). Moreover, it is relatively
easy to modify the complexity of this task by manipulating
parameters such as the ratio of vertical lines included in the
polyline patterns. In this study, to induce arousal change in a
short period, we set this parameter at 90%. The right panel of
Figure 1 shows the overall pattern constructed. This pattern
was repeated in a one-minute cycle in the following experi-
ment and simulation.

In addition, to examine changes in arousal level during the
task, we designed a pop-up window (probe) asking partici-
pants to respond to the degree to which they were focused on
the task. The probe was presented at an interval of approxi-
mately 50 s, with randomized noise added to the interval.

Method
Eighty-one participants finished the experiment procedure,
where they first accessed the online system and read the in-
structions for the task at their own pace. After completing a
test to confirm their understanding of the task, they engaged
in the line-following task for 30 min.

In this experiment, we set up three BGM conditions to ex-
amine environmental factors influencing the arousal changes
during the task. The participants engaged in the task under
the following conditions:

• No BGM: No music was presented (n = 27)

• Low BPM: The task environment included music at 80
beats per minute (BPM) (n = 25)

• High BPM: The task environment included music at 120
BPM (n = 29)

However, this paper did not focus on the difference between
the conditions.

Results
Figure 2 shows the offline rate (the percentage of time that
the circle did not follow the line). These results are shown for
30 segments of 1 min each of the 30-min task execution. In
each condition, the offline rate decreased in the initial phase,
suggesting that mastering the perceptual and motor coordina-
tion occurred during this early phase. Although the difference
between conditions was not apparent, the average offline rate
in the high-BPM condition (the thick red line) increased over
time (after 18 segments), suggesting cases of U-shaped tran-
sitions 1. The model presented in the following section tried
to generate such a trend in task performance.

1Because the study uses an offline ratio as the performance index,
the observed U-shaped curve corresponds to the inverse U-shape
curve discussed in the introduction.
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Figure 2: Participant performance in the line-following task.
The thin line shows the cases per participant, and the thick
lines show their mean. The vertical axis is on a logarithmic
scale.

Model
We constructed a model following the four previous ACT-R
models: the perceptual-motor process (Morita et al., 2020),
the mind-wandering mechanism (van Vugt et al., 2015), time
perception (Taatgen et al., 2007), and mastering the motor
process (Anderson et al., 2019). By combining the first two,
the current model represented the execution of the task and
the deviation from the task. We also represented arousal
changes by applying the temporal module representing sub-
jective time, while the effects of mastering the task on mind-
wandering were also modeled as motor skill acquisition.

Perceptual-Motor Process
The model’s state transitions were constructed based on the
previous study (Morita et al., 2020), which are represented in
Figure 3. As seen in the figure, the model consists of cyclic
behaviors of perceptual and motor processing. These pro-
cesses are realized by the functions implemented in the fol-
lowing modules.

Visual Module This module simulates interaction with the
external environment. The visual module reads the symbols
(e.g., the position of a circle or a turn in the line) necessary to
perform the task from the external environment (in the model,
a display on a virtually created window).

Motor Module This module simulates the operations re-
quired in the task. In the line-following model, the module
executes key presses corresponding to the movement of the
circle and responding to a probe.

Declarative Module This module stores symbolic chunks,
a unit of symbolic information in ACT-R. These chunks



include episodic memories, semantic knowledge, and the
model’s goals. The last chunk is important for representing
mind-wandering in the line-following task. As in the previous
mind-wandering model (van Vugt et al., 2015), two types of
goals are available in the model: the goal for the current task
execution and the goal for default-mode thinking. In addition
to these two goal chunks, the model has chunks correspond-
ing to individual memories that are not relevant to the current
task.

Goal Module This module holds one of the two goal
chunks retrieved from the declarative module. In addition, the
module stores the current states of the task that are required
to control the flow of the line-following task. Those states in-
clude the states obtained from the visual module, such as the
circle position and the next turn position.

Production Module This module manipulates the other
modules by selecting and applying production rules using
chunks held by the other modules. In the current model, the
application of this module results in the flow shown in Figure
3. Importantly, each transition (corresponding to a single ap-
plication of a production rule) requires a specific time cost (50
ms), following the default setting of ACT-R. By accumulat-
ing these time costs, the model can predict the line-following
performance in time constraints that is compatible with the
human experiment.

In this model, the modules shown so far are integrated in
the following steps:

1. The model sees the state of the external environment in the
visual module (Figure 3 1⃝),

2. It updates the current state of the goal module (Figure 3
2⃝),

3. 3. It requests a goal chunk for the declarative module (Fig-
ure 3 3⃝), and

4. It performs the necessary operations (key press) for the task
through the motor module (Figure 3 4⃝)

After the above steps, the visual module checks for a new
state in the external environment and returns to Step 1. If the
declarative module retrieves the goal chunk that directs atten-
tion to default-mode thinking, it does not perform the opera-
tions required for the task (key presses). Instead, it enters a
state of continued recall of memories outside the task (mind-
wandering). When the goal chunk about the current task is
accidentally recalled in this process, the model returns to the
task. The mechanism of switching between these two loops
is further described in the next subsection.

Mind-Wandering Mechanism
As described above, the model loop related to the task com-
petes with the loop related to mind-wandering. The conflicts

Figure 3: Block diagram showing the model processing.

between the loops are then resolved by the activation mech-
anism, following the previous mind-wandering model (van
Vugt et al., 2015). In the ACT-R theory (Anderson, 2007),
the activation of a memory depends on its recency and fre-
quency of use. That is, memories that were most recently or
frequently used are more likely to be recalled. Thus, when
the goal for the current task is highly activated in the early
stage of the task, the perceptual-motor loop (the upper part of
Figure 3) continues to be strengthened.

However, when a memory involved in mind-wandering
is accidentally introduced during mastering the task, and
no penalty is imposed, the probability of selecting the goal
for the default mode of thinking (an activity that was fre-
quently engaged in outside the task) increases. When mind-
wandering continues and the goal for the current task is no
longer recalled, the model leaves the task.

Mastering Motor Control
The accuracy of the perceptual-motor loop (the upper part
of Figure 3) is improved by learning through the task. This
learning is controlled by a tracker module in ACT-R 7.27,
initially proposed by Anderson et al. (2019), based on the
simulated annealing algorithm (Kirkpatrick et al., 1983). This
module adjusts the continuous conditions for selecting motor
operations based on positive and negative feedback from the
environment.

In the model presented in Figure 3, the motor operations in-
clude “stop” (release key), “go right” (press the key assigned
to the right), “go left” (press the key assigned to the left), and
“continue” (continue the previous operation). In this motor
operation selection, the distances between the circle and the
line (a continuous value) obtained from the perceptual pro-
cesses in Figure 3 1⃝ are used as conditions. The current
model specifically observes two distances, which are visible
as two lines drawn on the screen (see Figure 1)2: the magenta
line showing the distance between the circle and the nearest
point on the line and the blue line showing the distance be-
tween the circle and the next turn on the line.

The tracker module automatically adjusts the boundaries
of these values to select one of the four motor operations ap-

2In the human experiment, these lines were removed.



propriately. If this adjustment is not appropriate, the model
fails to follow the lines because the circle overshoots the line
or executes the operation before it reaches the line. Appro-
priate coordination in this model is learned sequentially by
receiving negative feedback for failing to follow the line. The
tracker module has a subsymbolic parameter called temper-
ature, which controls the fluctuations in the boundaries be-
tween motor operations. This parameter usually has a high
value at the beginning of the task and decreases over time.
In other words, the model engages in exploration in the early
stages of the task, whereas it exploits the acquired coordina-
tion at the later stages. Therefore, it is assumed that the ad-
justment in boundaries between motor operations converges
within a specific range at the appropriate temperature setting,
leading to high perceptual-motor performance.

Homeostasis Through Time Perception
As discussed above, the mind-wandering mechanism previ-
ously presented (van Vugt et al., 2015) has limitations in
connecting physiological mechanisms. To address this issue,
ACT-R/Φ (Dancy et al., 2015) integrates ACT-R and phys-
iological mechanisms. However, ACT-R/Φ uses an entirely
independent simulator of physiological variables. Therefore,
we consider this model to have a unification problem between
cognitive and physiological components. Furthermore, be-
cause it uses two separate components developed for differ-
ent purposes, it seems difficult to claim that ACT-R/Φ is a
single consistent architecture. Therefore, this study attempts
to construct the physiological mechanisms involved in mind-
wandering using only the basic modules incorporated in the
original ACT-R while basing the concept on ACT-R/Φ.

The concept of ACT-R/Φ is that physiological mecha-
nisms such as homeostasis play the role of modulators ad-
justing cognitive processes (Ritter, 2009). This idea assumes
a correspondence between various physiological indices and
subsymbolic parameters in ACT-R. A typical relation is the
correspondence between the amount of epinephrine released
when the sympathetic nervous system is activated (aroused)
and ANS (activation noise s), one of the ACT-R noise param-
eters. The ANS parameter is used to determine the degree
of fluctuation in recalling chunks from the declarative mod-
ule. When ANS is low, the model exploits highly activated
chunks, whereas when ANS is high, the model explores the
various chunks. This behavior allows us to understand the
arousal level of the model relative to the ANS. In this study,
we adjusted the ANS according to the above ideas (small and
large ANS representing high and low arousal, respectively)
and modeled the arousal changes as the task progressed.

To implement the above relation, this study used the tem-
poral module (Taatgen et al., 2007) built in ACT-R. It is
pointed out that temporal cognition is modified by the atten-
tion directed to the main task. When the task is performed
at high arousal levels, people feel that time flows quickly. In
contrast, when the task is performed at lower arousal levels,
they perceive a slower time flow. Therefore, we considered
that a more integrated architecture could be achieved by ex-

pressing the arousal changes with the time perception module
(temporal module).

Time perception in ACT-R is controlled by a mental timer
(pacemaker). This timer counts the number of ticks (t) that
have elapsed since it started, using the equation

tn = a · tn−1 + ε, (1)

where a stochastic noise (ε) is added for each count (n). This
equation represents the nonlinear time perception explaining
why estimates of time intervals over long periods are less ac-
curate than estimates of time intervals within short periods.

To use this equation for arousal change, this study assumed
that n was reset (n= 0) when the model perceived new events.
Specifically, the reset occurred when the circle fell away from
the line or a probe appeared on the display. Thus, the interval
between counts increased with the increase in counts until the
model received the above events.

In addition, we assumed that the decrease in the accuracy
of time perception corresponded to a decrease in arousal over
time. Specifically, we introduced the equation

ans = k× t (2)

where k is a coefficient to adjust the decrease in arousal level
with respect to time. By manipulating this, we explored the
conditions in the U-shaped curve observed in the human ex-
periment.

Simulation
Objective
We proposed that the model could represent an inverted U-
shaped curve for task performance according to the optimal
level theory. To confirm this behavior, we used the following
four indices.

(a) Concentration: Difference in activation between the goal
chunks for the current task and default-mode thinking.

(b) Mind-wandering ratio: Percentage of time default-mode
thinking occurs in the goal module.

(c) Offline ratio: Percentage of time where the circle does not
follow the line.

(d) ANS: Value calculated by Equation 2.

Settings
The simulation conditions were set up by changing the value
of k in Equation 2 in three steps (0.01, 0.03, 0.06). The model
with a small k corresponded to a highly focused situation,
while the model with a large k corresponded to a distracting
situation.

Feedback for the tracker module was determined when the
model perceived the environment (Figure 3 1⃝). The tracker
module gave the model positive feedback of 10 when it was
online and negative feedback of 10 at the moment it went
offline.
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Figure 4: Simulation results. From the top, the concentration
rate (logarithmic vertical axis), mind-wandering rate, offline
rate (logarithmic vertical axis), and activation noise (logarith-
mic vertical axis) are shown. The red line is the mean of 10
runs; the error bars are the standard error multiplied by 0.5.

The simulation duration was set to 30 min to match that
of the human experiment, and, as with the humans, 30 one-
minute-long courses were used. In addition, at the beginning
of the task, the goal for the current task was set to be more
accessible to recall than the goal for default-mode thinking3.

Results
Figure 4 shows the simulation results. These results show
the effect of k on the four indices. The smaller-k condi-
tions (k = 0.01,0.03) are associated with a higher concen-
tration ratio, corresponding to less mind-wandering, a lower
offline ratio, and lower ANS. In addition, the concentration
ratio increased over time in those conditions. This trend is
also reflected in the decreasing trend of the offline ratio in the
smallest-k condition (k = 0.01), indicating that a small ANS
fluctuation strengthens the current task’s goal and keeps the
task execution stable.

3The activation was manipulated by parameters of “chunk cre-
ation time” in ACT-R. The chunk creation time for for the current
task was set to 800, where as that for default-mode thinking was set
to 300.

In contrast, the task performance did not increase over time
in the high-k condition (k = 0.06), though the motor learn-
ing progressed. Although the average trend of offline ratio is
almost flat in the higher-k conditions (k = 0.03,0.06), some
cases improved the task performance in the middle of the
task. The thick black line highlights the typical case, show-
ing such improvement in the middle of the task. As seen in
this case, some cases show a U-shaped curve, which was also
observed in the human experiment.

Conclusion
This study aimed to construct a model of arousal changes
over time by integrating the primitive ACT-R modules. To
achieve this goal, we first collected human behaviors in a sim-
ple perceptual-motor task and observed the U-shaped curves
in some participants. We constructed a model of arousal
change to reproduce such human behaviors by combining the
perceptual-motor process, mind-wandering mechanism, time
perception, and motor skill acquisition. These modules have
different types of dynamics, and combining them is expected
to reproduce the nonlinearity of arousal change, namely the
theory of the optimal level of arousal. As a result, inverse
U-shaped performance transitions over time in the task were
observed in some cases.

The significance of this study is that physiological pro-
cesses, which were previously considered independent mod-
ules, are represented in the ACT-R primitive modules. In con-
trast to previous studies (Gunzelmann et al., 2009, 2012) that
used a computational physiological model, our model is orig-
inal in that it integrates components that initially came from
different backgrounds. We consider that to achieve a truly in-
tegrated understanding of the human mind, the approach of
adding ad hoc parameters to the architecture is not exactly
sufficient. This study can be viewed as an endeavor in refac-
toring complex cognitive architecture to be a unified theory
of human cognition.

In the future, we need to proceed further with this ap-
proach. For example, we only manipulated the activation
noise parameter reflecting the arousal level in this study.
However, ACT-R includes several other noise parameters in
the production, tracker, and temporal modules. Therefore, we
need to explore methods of integrating such different noises.
We also need to seek valid assumptions behind the corre-
spondence between ACT-R’s noise level and the physiolog-
ical process through this process.

The experiment and model should also be improved. Al-
though we manipulated environmental factors (background
musics) in the human experiment, we did not find clear re-
sults. Revealing the robust factors leading to inverse U-
shaped learning is critical for obtaining clear correspondence
between human behavior and model simulation. By improv-
ing the experimental method and the model, we can explore
a more plausible representation of the optimal arousal level.
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