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Introduction

Function learning is the process by which humans acquire
knowledge of functional relationships between continuous
variables. For example, a frequent beachgoer might visit
the beach on different nights and come to associate specific
tide heights with specific moon phases. With experience,
the beachgoer might then abstract an underlying functional
relationship: the tide rises approaching the full moon, and
lowers approaching the new moon.

Most theories of function learning largely focus on two
types of models: exemplar-based and rule-based models.
Exemplar-based models posit that humans learn to associate
exemplar cues with their respective targets via error-driven
updates of associative weights (Busemeyer et al., 1997).
Rule-based models posit that humans instead begin with
some parametric function and learn its coefficients through
an error-driven update mechanism (e.g. polynomial rule
model: Koh and Meyer (1991)). More recent studies have
proposed hybrid models that combine associative learning
with rules, and these models have been shown to better
account for a wide range of function learning phenomena than
their predecessors (e.g. EXtrapolation Association Model
(EXAM): DeLosh et al. (1997); Population Of Linear Experts
(POLE): Kalish et al. (2004)).

Despite their differences, existing process models mostly
assume that function learning is a gradual and continuous
process. In contrast, Brehmer (1974) proposed a two-staged
hypothesis testing theory of function learning. The first stage
involves discovering a suitable rule, and the second stage is
concerned with learning the parameters of the rule. Although
this theory has not been quantitatively formalized, it differs
from the other theories by positing a discontinuity when
the learner transitions from discovering a rule to applying
a rule. In support of the role of rule discovery in human
function learning, we present preliminary evidence of such
discontinuities and demonstrate that existing process models
do not adequately account for these observations.

Experiment

The experiment was a replication of study la of McDaniel
et al. (2014), but with Amazon Mechanical Turkers instead
of undergraduate students. 59 participants, 21 females, ages

ranging from 20 to 53 years old (mean = 32.3), completed the
experiment. Participants were paid $4.50 for completion and
an accuracy bonus up to $0.02 on every training trial.

Participants completed 10 training blocks followed by 1
transfer block. Each training block consisted of the same
20 trials presented in random orders. For each training trial,
the cue value was represented using the height of a colored
bar, and participants made their predictions using arrow keys
to adjust the height of a separate response bar. Feedback
was presented in three forms: the response bar at the target
height, an error score consisting of the numerical difference
between the response and the target values, and an accuracy
score computed as 100 — error®. Transfer trials consisted
of novel cue values, both within (interpolation) and beyond
(extrapolation) the range of training cue values. No feedback
was provided during the transfer block.

Cues and targets were related through a V-shaped function.
For cue < 100, target = round(229.2 — 2.197 - cue). For
cue > 100, target = round (2.197 - cue — 210).

Detecting discontinuities

One potential behavioral correlate of rule discovery is an
abrupt decrease in an individual’s error rates as they proceed
through the training phase. To detect such discontinuities if
and when they occur, we fitted single- and double-function
error curves for each participant. Error noise was assumed to
be Poisson distributed and these functions specified how the
error mean (A) changed with trial number (z).

The set of single-function curves comprised a constant
mean (A = ¢), an exponentially decreasing mean (A = a -
e (1) 1 ¢), and a mean that decreased according to a power
function with increasing number of trials (A = a-t7? + ¢).
The single-function curves were composed to create the set
of double-function curves, with the restriction that the second
function was a constant. All double-function curves required
an additional change point parameter.

To determine if an individual demonstrated an abrupt
decrease in error, we computed two measures. The
first measure (ABIC) was the difference between the
Bayesian Information Criterion of the best fitting single- and
double-functions. A large and positive ABIC indicated that
the error curve was much better fit by a double- than a
single-function. To quantify abruptness if a transition exists,
the second measure (Amean) was the difference between
the pre- and post-transition fitted means for the best fitting
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Figure 1: Error curves for two participants. Colored lines
show the best fitting single- and double-function curves. The
top panel displays an abrupt decrease in error, whereas the
bottom panel displays a gradual decrease in error over time.

double-function. A large and positive Amean indicated an
abrupt decrease in error around the estimated change point.

Using these two measures, we classified participants into
those who did and did not show abrupt learning. The 59
participants were first separated into 28 learners and 31
non-learners according to the criterion in McDaniel et al.
(2014): learners were those who attained an average absolute
error of less than 10 on the last training block. We then
determined a combined threshold on our two measures. The
threshold was chosen to be as inclusive as possible with the
constraint that only learners could be classified as abrupt
learners. This yielded a threshold of ABIC > 45 and Amean >
5. Based on the threshold, 7 out of 59 participants were
classified as abrupt learners (Fig. 2).

Model comparisons

To generate individual model simulations, we found the best
fitting set of parameters per participant for three process
models (polynomial rule, EXAM, and POLE) by maximizing
the log-likelihood with respect to the participant’s responses.
Applying the same classification procedure as above, none of
the model simulations were classified as abrupt learners.

Conclusion

In this study, we identified a subset of participants that
demonstrated abrupt decreases in error over the course of
a function learning task. Our simulations of the existing
process models confirmed that gradual update mechanisms
cannot reproduce the observed discontinuities, which is
consistent with the hypothesis that these discontinuities
correspond to moments of rule discovery. To test this
hypothesis, we are currently investigating the nature of rules
and the role of rule discovery in human function learning.
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Figure 2: Individual participants and model simulations on
abruptness measures. The two participants from Fig. 1 are
labeled. Thresholds for the two measures are represented by
the dashed lines. Individuals in the upper right quadrants of
each panel are classified as abrupt learners.
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