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Abstract

Over the last century, a large variety of cognitive models for
syllogistic reasoning have been developed, thereby advancing
our understanding about the way humans process reasoning
tasks. Most of the research was performed on a restricted set
of quantifiers from first-order logic, which simplified model
evaluations and comparison due to a well-defined set of tasks and
the availability of complete and extensive datasets. However, as
everyday reasoning and communication relies on a large variety of
quantifiers, the scope and potentially also the generalizability of the
models was severely limited. The present work aims at extending
the domain of syllogistic reasoning to a wider set of quantifiers by
(I) presenting a benchmarking dataset that includes the quantifiers
“Most” and “Most not”, (II) evaluating two state-of-the-art models
(the Probability Heuristics Model and mReasoner) with respect
to their ability to account for individual reasoners and (III) set the
predictive performance of the cognitive models into perspective by
comparing them to upper bounds and providing in-depth insights
about their strengths and weaknesses.
Keywords: Syllogistic Reasoning; Generalized Quantifiers;
Cognitive Modeling; Probability Heuristics Model; Mental Model
Theory; mReasoner

Introduction
Syllogistic reasoning is one of the oldest domains for researching
human reasoning capabilities, with a history of over a century
(Störring, 1908). As an example, consider the following
syllogism:

(1) Most Mammals are Land Creatures.
(2) Most Mammals are Intelligent Creatures.

What, if anything, follows from these two premises?

In general, syllogisms consist of two premises making a
quantified statement about the relation between two terms (e.g.,
mammals and land creatures in the first premise), that are con-
nected via a term occurring in both statements (middle-term; e.g.,
mammals). In this example, the task would be to infer the relation
between the two end-terms (land creatures and intelligent crea-
tures), which can be done by considering how each of them relates
to mammals. In this case, it can be concluded that at least some
land creatures are also intelligent (and therefore some intelligent
creatures live on land). Generally, research has shown that humans
systematically deviate from logic (e.g., Khemlani & Johnson-
Laird, 2012), which prompted the development of theories that
describe and explain how humans reason about such tasks.

Throughout the article, we will use common abbreviations
(e.g., Pfeifer, 2006) for the syllogisms, using single letters for

the quantifiers: A, I, E, O, T and D for All, Some, No, Some...not,
Most and Most...not, respectively. Furthermore, we denote the
order of the terms in the premises with a so-called figure. In
this article, we use the definition of figures used by Khemlani
& Johnson-Laird (2012), which is shown in the following table
(leading to the abbreviation TT4 for the syllogism in the example):

Figure 1 Figure 2 Figure 3 Figure 4

Premise 1 A-B B-A A-B B-A
Premise 2 B-C C-B C-B B-C

Most research about syllogistic reasoning focused on a re-
stricted subset of syllogisms that only considered the quantifiers
from first-order logic (All, Some, No and Some...not, which we
refer to as classic quantifiers) while excluding generalized quanti-
fiers like most and few. This restriction has allowed researchers to
investigate a well-defined subset of 64 possible syllogisms with 9
possible conclusions: 8 quantified conclusions (4 quantifiers with
2 directions each) and the option that there is no valid conclusion
(NVC). Currently, a multitude of theories explaining how humans
solve these syllogistic tasks exist (for an overview see Khemlani &
Johnson-Laird, 2012), which were thoroughly evaluated in terms
of their ability to predict general human behavior as well as adapt
to individual reasoners (e.g., Khemlani & Johnson-Laird, 2012; Ri-
esterer, Brand, & Ragni, 2020a). For these evaluations, complete
datasets, i.e., where each participant solved all tasks of the domain
(64 in this case), are pivotal as they allow an investigation on the
level of individual participants without introducing a potential bias
due to the task selection. Furthermore, purely data-driven models
that require a rich data foundation can also be included as an
upper bound for performance (Riesterer, Brand, & Ragni, 2020b).

Unfortunately, restricting the research focus to only four, first-
order logic based quantifiers limits the applicability of the resulting
theories to everyday communication and reasoning (e.g., Pfeifer,
2006), which involves a variety of qualitatively different quan-
tifiers. The restriction therefore severely limits the scope of the
understanding we obtained from our theories. However, while it
would be beneficial to extend the set of quantifiers, it comes at a
cost: Each additional quantifier exponentially increases the num-
ber of tasks, making the collection of a complete dataset challeng-
ing if not impossible. Selecting the quantifiers is also an arbitrary
decision, as they are not part of an established framework, such as
first-order logic that justifies the distinct restriction to a certain set.



To address this issue, we have collected a complete dataset with
the additional quantifiers Most and Most...not, amounting to a
total of 144 syllogisms per participant, in a recent study (Brand et
al., in press). Importantly, these generalized quantifiers can not be
expressed in first-order logic for sets of unknown sizes, which is
usually the case for syllogistic tasks. Therefore, they could provide
insight into a different facet of human syllogistic reasoning. Our
analyses showed that the inclusion of additional quantifiers did not
change the behavior on the classic syllogisms, leaving the validity
of previous research efforts unchallenged. However, the vast ma-
jority of theories explaining syllogistic reasoning have exclusively
been evaluated on the narrow set of classic syllogisms, and it
remains unclear if these theories still apply to the wider domain
of generalized syllogisms. To this end, the present work makes
the following contributions: First, we repeated the study and col-
lected additional participants in order to compile a dataset that is
suitable for model evaluation and benchmarking in the domain
of generalized syllogisms. Second, we evaluate two of the most
prominent models for human syllogistic reasoning, mReasoner
and the Probability Heuristics Model (PHM), which are both able
to handle the additional quantifiers. We specifically focus on their
capability to account for individual reasoning behavior as opposed
to a distribution over a population. Finally, we analyze and dis-
cuss where the models succeed and where they fail at explaining
human data by comparing them to several baseline models.

Related work
Probability Heuristics Model
The Probability Heuristics Model (PHM Chater & Oaksford,
1999; Oaksford & Chater, 2001) assumes that people’s everyday
reasoning does not follow logical validity of quantified assertions,
but their probabilistic validity instead. The probabilistic validity
(or p-validity) of a conclusion is defined by the conditional
probability of the end-terms, which in term is determined by
the conditional probabilities described in the premises (where
an end-term is one of the terms that are to be connected in the
syllogistic task). The PHM proposes that people do not deduce p-
validity mathematically but instead use a number of heuristics that
converge to p-validity. These heuristics are based on the notion of
p-entailment, describing that certain quantifiers probabilistically
follow from others (for instance, ”All” entails ”Some”), and
the notion of informativeness, detailing that less probable and
therefore more specific quantified assertions are more informative.
This yields the informativeness order of quantifiers: All > Most
> Most not > Some > No ≥ Some not. To generate a conclusion
candidate, the PHM uses the following three generative heuristics
(G1-G3): First, the min-heuristic (G1) identifies the premise
with minimal informativeness (min-premise) to determine the
quantifier of the conclusion. Second, an alternative candidate
quantifier that probabilistically follows the quantifier from G1
is proposed (p-entailment, G2). Finally, the direction of the
conclusion is determined by the attachement heuristic (G3). If the
min-premise from G1 starts with an end-term, the respective term
is used as the subject of the conclusion. Otherwise, the end-term
of the remaining premise (max-premise) that features the most

informative quantifier is used as the subject of the conclusion.
The PHM also assumes that people may test their initial

deductions. It proposes that this process comprises a further two
heuristics (T1 and T2), which evaluate how much confidence
should be granted to the conclusion candidate (either the
candidate with the quantifier determined by G1 or G2). To
this end, the informativeness of the max-premise is considered
by the max-heuristic (T1). It is assumed that confidence and
the informativeness of the max-premise are coupled, which
means that NVC can be concluded if the confidence is too low
(Copeland, 2006). Additionally, the O-heuristic (T2) postulates
that Some not (O) should generally be avoided in conclusions due
to their lack of informativeness. However, given the mechanism
of the max-heuristic, O-conclusions already are the conclusions
with the lowest confidence, which makes the O-heuristic more
a refinement than an independent heuristic.

It is important to note that the interpretation of the quantifiers as-
sumed by PHM excludes All from the quantifier Most (i.e., if Most
A are B, then All A are B does not hold). However, Some also in-
cludes the possibility of All, following the traditional interpretation
from first-order logic. Negated quantifiers are treated analogously.

mReasoner
Another prominent theory for syllogistic reasoning is the Mental
Model Theory (MMT; e.g., Johnson-Laird, 2010). MMT
assumes that reasoners construct a mental model representing
the information provided by the premises of the syllogism
that is then used to derive a conclusion. It thereby follows a
four-step procedure (Copeland, 2006): The first premise is used
to create a mental model representing the information by an
instantiated set of entities that are assigned to the syllogistic
terms of the premise based on the respective quantifier. Then,
the mental model is extended by the second premise, thereby
integrating information about the third syllogistic term. In the
third step, a conclusion candidate is derived from the mental
model. Finally, the conclusion candidate is tested by a search for
counterexamples, that checks if the conclusion candidate holds up
to alternative mental models that are consistent with the premises.
If a counterexample is found, the mental model is either corrected
and a new conclusion candidate is derived, or the process is
aborted and NVC is concluded. If no counterexample is found,
the candidate is accepted as the conclusion to the syllogism.

This process is implemented in the LISP-based cognitive
model mReasoner1 (Khemlani & Johnson-Laird, 2013). It uses
four parameters associated with the inference process (Khemlani
& Johnson-Laird, 2016): λ determines the maximum number
of entities in the initial mental model by specifying a Poisson
distribution from which the number of entities is drawn. ε then
determines the completeness at which the premise information is
represented within the entities. Finally, σ controls the likelihood
to engage in the search for counterexamples. ω then controls the
behavior of mReasoner in the case that a counterexample was
found by specifying the probability of weakening the conclusion
quantifier and re-engaging in the search for counterexamples. If

1https://github.com/skhemlani/mReasoner



a counterexample was found and the conclusion quantifier is not
weakened, NVC is concluded instead.

Expanding mReasoner to generalized quantifiers Building
mental models of quantified assertions containing generalized
quantifiers poses a particular challenge to mReasoner because
of the ambiguity of the quantifiers most and most not under
certain circumstances (S. Khemlani, personal communication,
March 3, 2022). To incorporate this, the Authors have equipped
mReasoner with a more general model-building system than that
required for syllogisms that only contain the classic quantifiers.
More specifically, it takes advantage of its ability to generate
mental models of different sizes (governed by its λ-parameter) as
well as its stochastic mode. By incorporating the ability to parse
generalized quantifiers in the stochastic model-building system,
mReasoner can represent statements containing ”most” in figure
2 or 3, which it would not be able to do otherwise (S. Khemlani,
personal communication, March 3, 2022).

Method
Data
In a previous study, the responses of 31 participants to 144 syl-
logisms were collected over the course of three sessions in order
to minimize fatigue (Brand et al., in press). The study comprised
all 64 syllogisms with the first-order logic quantifiers All, Some,
No and Some not as well as 80 additional tasks consisting of syl-
logisms with the generalized quantifiers Most and Most not. To
minimize biases due to the content of the syllogisms, hobbies and
professions were used for the terms. The study thereby covered
all syllogisms that could be constructed from the 6 quantifiers.
Participants were asked to give either a quantified conclusion fol-
lowing from the premises or to respond with No valid conclusion,
if no conclusion was possible. For the present work, we re-ran the
study and extended the dataset by another 34 participants. The
following analysis is therefore performed on a dataset consisting
of 65 participants (mean age: 39.1, age SD: 14.0, female: 52.3%),
where each responded to all 144 syllogistic tasks. The dataset and
materials for the analysis are publicly available on GitHub2. Note
that for assessing the correctness of participants’ responses, we
use the common interpretation that Most(A,B) for finite sets A and
B as |A∩B|> |A−B|, with |·| being the size or the number of their
elements (e.g., Westerståhl, 1989; Novák, 2008). Therefore, we
are treating Most as More than half, which means that All also im-
plies Most. However, no specific interpretation for the quantifiers
was instructed in the study, so that the participants’ understanding
of the quantifiers are reflected in their response behavior.

Model Evaluation
For the following analyses, we used the Cognitive Computa-
tion for Behavioral Reasoning Analysis (CCOBRA) framework3

and its coverage evaluation type (see Riesterer, Brand, & Ragni,
2020a). In this type of evaluation, the parameters of both PHM and
mReasoner are first optimized for each participant by grid search-
ing the parameter space and selecting those parameter settings that

2https://github.com/Shadownox/iccm-syl-genquant-models
3https://github.com/CognitiveComputationLab/ccobra

yield optimal mean accuracy. Using the optimal parameter settings
for each participant, the models are then queried for predictions of
the responses that the participant gave for all tasks. Overall model
predictive performance is assessed via the achieved accuracy.
Technically, the models were thereby fitted to the exact responses
that it later has to predict. This means that a fully data-driven
model with no restrictions on the number of parameters would be
able to achieve a perfect prediction. However, cognitive models
are restricted by the number and expressiveness of their parame-
ters: The parameters should reflect and control meaningful mech-
anisms in the model’s processes. Therefore, the coverage evalu-
ation assesses the models’ capabilities to represent the individual
response patterns within the framework of their assumed processes
and mechanisms and by that explaining the individual behavior.

PHM
In the following analyses we build upon a recent Python-based
implementation of PHM, which used binary parameters to fit the
model to individual reasoners (Riesterer, Brand, & Ragni, 2020a).
In their implementation, a parameter for each confidence in a cer-
tain quantifier was implemented. Additionally, a parameter was
introduced for the p-entailment, which specified if the conclusion
based on the min-heuristic or the p-entailment should be used.
While the parameters are usually continuous and interpreted as
probabilities, the implementation was aiming at individual rea-
soners instead of a group of reasoners. Therefore, the parameters
could be binary: As each participant usually only solves each
task once, a prediction of the specific response has to be achieved
by a model, instead of a distribution of possible responses. This
simplifies the fitting process, as the number of parameters is quite
low and allows for a exhaustive grid search in the parameter space.
Additionally, the parameter space is further restricted by the addi-
tional constraint that the confidences follow the same ordering as
the informativeness. Therefore, the confidence for Some can never
be higher than the confidence for All. As the original implemen-
tation by Riesterer, Brand, & Ragni (2020a) only considered the
4 quantifiers from first-order logic, we extended the model to the
generalized quantifiers Most and Most not. It is important to note
that we incorporated Most not in the same way as Few was used
in the original description of PHM by Chater & Oaksford (1999).

Furthermore, Chater & Oaksford (1999) also consider weak
p-entailment, which would allow Most and Most not to follow
from the quantifiers Some and Some not. In our implementation,
we do not consider weak p-entailment, which implies that
generalized quantifiers in conclusions are never considered for
the classic syllogisms.

mReasoner
For mReasoner, we used the Python-based model by Riesterer,
Brand, & Ragni (2020a) which internally relies on the original
LISP-implementation of mReasoner in order to rule out
differences in the model behavior. The model was then extended
to the quantifiers Most and Most not, and the updated version
of mReasoner was used. The parameters were fitted using a
grid-seach with 6 steps for each parameter. For ε, ω and σ which
have a range from 0 to 1, this yiels a stepsize of 0.2. The range



for λ was chosen to be between 3 and 8 (which leads to a stepsize
of 1). While Riesterer, Brand, & Ragni (2020a) used the full
range of λ with λ∈ [0,8], the extension to generalized quantifiers
required higher values to work. Furthermore, it was required
that ε<1. To account for the randomized nature of the inference
process, each configuration was sampled 10 times.

Baseline Models
Similar to existing benchmarking settings for syllogistic reasoning
(e.g., Brand et al., 2020; Riesterer, Brand, & Ragni, 2020a,b), we
included a Random model as a lower bound of the performance,
which uniformely selects one of the possible response options,
as well as the most-frequent answer (MFA), which uses the
most frequently given response to a syllogism as a prediction.
The MFA is also the best model when not fitting to individual
participants. To assess the maximum predictive performance
(theoretically) achievable with the present dataset, we included
a purely data-driven model as an upper bound (for a similar
application of data-driven models, see Riesterer, Brand, & Ragni,
2020b). We used a user-based collaborative filtering model
(UBCF), which is a neighborhood-based model from the field of
recommender systems that relies on the behavior of other users to
predict a targets’ behavior (for an in-depth description, see Aggar-
wal, 2016). Based on the responses given to all syllogisms except
for the one to be predicted, a neighborhood of the k most similar
participants is created. When predicting the response of a target
participant to a syllogism, each neighbor votes for the responses,
where the vote is weighted by the respective similarity to the
target participant. To discount less similar neighbors even more,
the similarity can be raised to the power of an exponent-factor exp.
The final prediction is then the response with the most votes. For
this analysis, we used the parameters k=12 and exp=3, which
was found by applying a grid-search for the best parameters.
One advantage of the UBCF is the similarity to the MFA, as the
MFA can be interpreted as a special case of the UBCF: If no
information about the target participant is available, the similarity
is not defined, leading to the neighborhood consisting of all other
participants available. Therefore, the prediction would just be
the most frequently given response. Therefore, the UBCF can
be considered as an extension of the MFA to the individual level.

Analysis
Overall Model Performance
Figure 1 shows how well mReasoner and PHM, as well as the
three baseline models, were able to predict participants’ responses.
Both mReasoner, with on average 39.7% correct predictions, and
PHM, with 41.7% correct predictions, performed noticeably above
chance-level at 7.7% and were able to surpass the MFA-model at
35.6%. The general performance indicates that both models can at
least partly explain peoples’ responses. The difference to the MFA-
model did, however, not reach significance (Mann-Whitney-U test:
U =1882.5, p=0.29 for mReasoner, U =1780.5, p=0.12 for
PHM, respectively), which shows that the ability to adjust to indi-
vidual response behavior is still lacking, which is also corroborated
by the performance of the UBCF model with 45.2%. It becomes

Random MFA mReasoner PHM UBCF
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 1: Predictive accuracy of the tested models on all
syllogisms. Each point represents the accuracy for predicting a
specific participant. The triangle denotes the respective mean.
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Figure 2: Predictive accuracy of the tested models for classic
syllogisms (blue) and generalized syllogisms (orange). Each
point represents the accuracy for predicting a specific participant.
Triangles depict mean accuracy scores.

apparent that there is still a substantial amount of information
available in the data, which is not yet covered by the models’
mechanisms. Despite the general problems with adapting to indi-
vidual reasoners, both cognitive models seem to be able to adapt to
a small group of reasoners exceptionally well, indicating that the
models generally are able to adapt to individuals, but still miss out
on important mechanisms. This highlights the potential for further
improvements of cognitive models for syllogistic reasoning.

Performance for Classic and Generalized Quantifiers
As our focus was on expanding mReasoner and PHM to the
domain of generalized quantified syllogisms, the differences in
the model performance between the two domains are especially
important. Therefore, Figure 2 depicts the results broken down by
the respective task domain (i.e., classic syllogisms and syllogisms
with generalized quantifiers). Note that, like in the general
performance analysis, the models are still fitted based on all tasks,
as we aim at evaluating the models’ abilities to generalize across
the different task types. It becomes apparent that all models
perform worse on generalized quantified assertions by about five
percentage points (except for the chance-level baseline).
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(b) Errors on syllogisms with generalized quantifiers

Figure 3: Errors when predicting responses for classic syllogisms (a) and syllogisms with generalized quantifiers (b) for PHM and
mReasoner, respectively. Darker blue colors denote a higher number of errors. Both models were fitted on the full set of syllogisms.

However, the fact that the UBCF model’s performance dropped
to a similar extent indicates that this drop could be attributed to
the participants’ response behavior being less clear. This is corrob-
orated by the fact that classic syllogisms were easier for the partic-
ipants to solve (mean correctness: GenQuant =0.25; Classic=
0.34), which in turn can minimize individual differences for some
tasks (i.e., if there is an obvious answer). Yet again, a wider range
of responses to generalized syllogisms could not be found: We
compared the entropy (see Shannon, 1948) as a metric for uncer-
tainty of the participants’ response distributions for both, the clas-
sic and the generalized quantifiers, in order to check for a system-
atic difference in the range of responses. The entropies showed no
substantial difference between both task types (GenQuant=3.30;
Classic = 3.22). However, easier tasks can nevertheless help
to improve the consistency within participants’ responses (i.e.,
the participant would reliably show the same response patterns),
which makes it easier for models to replicate the response pattern,
which might explain the differences between both task types.

Error Analysis
To see where the predictions of the cognitive models did not
capture the human responses well, we investigated for which
responses the most errors occurred (see Figure 3). For PHM, an
indistinct picture emerges. While it seems that PHM generally
tends to respond NVC too frequently, it does so for both task
types in a comparable fashion. It also seems to misjudge the
direction of the conclusion when not responding with NVC in
both task types. However, while the errors based on NVC and
the direction explain the majority of the errors on the classic
syllogisms (65,4%), this does not hold for the generalized
quantifiers (49%): Here, PHM also often mixes the quantifiers
up, especially between I, D and O. It seems to be the case that
participants are more variable in their use of these quantifiers as
to the fixed order of informativeness PHM relies on.

When focusing on the results for mReasoner, a much clearer
picture emerges. While the errors on the classic syllogisms are
rather similar to the errors shown by PHM, NVC accounts for the
vast majority of errors for the generalized quantifiers. NVC is the
logically correct response for the majority of tasks, especially for
generalized syllogisms (GenQuant = 76.3%, Classic= 57.8%),
which seems to be reflected in mReasoner’s mechanisms.
However, this is not reflected in the participants responses,
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Figure 4: Parameter distributions after fitting mReasoner and
PHM to each participant for the classic syllogims (blue) and
syllogisms with generalized quantifiers (orange).

which do not show a difference in their NVC response behavior
(GenQuant = 21.2%, Classic = 21.6%). Furthermore, mRea-
soner’s mechanisms for giving NVC-responses seem to be too
coarse: If it needs to respond with NVC for several tasks, it seems
to overshoot substantially. The differences between classic and
generalized syllogisms also seem to reflect that mReasoner han-
dles generalized quantifiers differently than the classic quantifiers.

Parameter Analysis
Based on previous analysis, we investigated the parameters that the
models would use for both task domains when fitted to them sepa-
rately. Figure 4 shows the parameter distributions for both models
when fitted to the responses of each individual participant on the
classic syllogisms and the generalized syllogisms, respectively. In-
terestingly, the parameters of mReasoner do not show substantial
differences except for ω, which controls behavior when a coun-
terexample is found. While mReasoner was shown to respond
with NVC too frequently, the difference in ω indicates that NVC
was in fact moderated by the parameters, as it means that a conclu-
sion in case of a found counterexample is rather weakened than
directly concluding NVC. Generally though, the parameters indi-
cate that the mReasoner’s performance would not change much if
fitted to the generalized quantifiers directly, which implies that the
performance was not impeded by a generalizability problem (i.e.,
having to find parameters that work for both, classic and general-



ized syllogisms), but rather due to a general inability to account for
certain response patterns occurring for generalized syllogisms. For
PHM, the results are generally more shifted towards responding
with NVC for the generalized quantifiers, by having a lower confi-
dence for all quantifiers. Although differences between both task
types show, the adaption to generalized tasks is mainly done by
the specific parameters for the quantifiers T and D, which do not
affect the classic tasks, as T and D can only become conclusion
candidates if they are present in the premises (note that this would
change if weak p-entailment was considered). In this regard, PHM
has a distinct advantage over mReasoner, as it utilizes parameters
that are specific for the extension to generalized quantifiers, while
mReasoner relies on the same core paramters for all tasks.

Discussion
In this work, we performed a thorough evaluation of the predictive
capabilities of PHM and mReasoner when confronted with syllo-
gistic reasoning tasks that include the generalized quantifiers Most
and Most not. The evaluation was performed on a benchmarking
dataset that contains the responses to all 144 syllogisms for all
participants, which allowed an analysis on the level of individ-
ual participants. The cognitive models were compared with the
most-frequent answer and an estimated upper-bound given by
a data-driven model based on user-based collaborative filtering.
Both cognitive models performed within expectations, as they
managed to slightly surpass the MFA, although not significantly.
However, a more detailed look into the performance for individual
participants, it appears that they are able to capture some of the
participants well and seem generally able to adapt to individual
participants. However, their performance fell short of to the UBCF,
which highlights the potential that is still left in the domain and in-
dicates that the models’ mechanisms are still not sufficient to cover
the variety of response patterns shown by different individuals.

When focusing on the generalized quantifiers, the performance
of all models dropped substantially (including the UBCF), which
indicates that the noise-levels are higher on these tasks. This is
supported by the lower correctness on these tasks, which can
lead to less consistent response behavior. However, the cognitive
models still managed to surpass the performance of the MFA,
which shows that their general mechanisms can generalize
from the four first-order logic quantifiers to an extended set
of quantifiers. This is corroborated by an analysis of their
parameters, which showed no substantial differences when fitted
to the classic tasks or the generalized tasks only.

Given the performance of both models, no difference, on
neither the classic nor the generalized syllogisms, is noticeable.
Therefore, based on the predictive performance, the assumed
underlying processes both seem to be equally plausible. However,
when the errors of both models are analyzed in detail, differences
become apparent. As it was already shown that models have
difficulties with correctly predicting the NVC-response on the
classic syllogisms (Riesterer, Brand, Dames, & Ragni, 2020), it
was likely that the problem carried over and thereby accounted for
a part of the errors. This shows for both models across both task
types, with NVC being an important source of error. However, the

magnitude of the problem greatly differs between the models: On
the one hand, the type of errors of PHM remain largely the com-
parable between classic and generalized syllogisms with NVC-
and direction-related errors, despite an increase in noise-like
errors on the generalized tasks. On the other hand, mReasoner
fails to replicate the participants’ NVC-behavior and drastically
overshoots with the frequency of NVC responses on generalized
syllogisms, while being comparable to PHM on classic tasks.
This indicates that its mechanism for handling generalized
syllogisms is currently inferior to PHM, although the problem
seems to be covered by the high number of NVC responses that
make predicting NVC frequently a rather safe strategy.

However, even though mReasoner currently seems to lag
a bit behind, it is important to note that PHM utilizes specific
parameters for the respective quantifiers, while mReasoner relies
on a fixed set of parameters and its core mechanisms. This can
greatly affect the future development, as it will be important
to further extend the scope of the domain in order to advance
our understanding in the field of syllogistic reasoning. While
PHM can be rather easily adapted to additional quantifiers, it
also means that the complexity of the model increases directly
with the number of supported quantifiers, which can become an
important factor when extending the domain further.

By providing a complete dataset and an evaluation of two state-
of-the-art models, the present work aims at setting a starting point
for extending modeling endeavors to an extended set of syllogisms.
However, a large variety of other quantifiers are important for our
everyday reasoning and communication, including more vague
quantifiers like Many or counting quantifiers (e.g., More than 3).
These possibilities have to be investigated in the context of syllo-
gistic reasoning, in order to warrant the claim that the present mod-
els and our knowledge reaches beyond well-defined abstract tasks.
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