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Abstract
While evidence shows that cyber attackers are good at
coordinating and collaborating in their attacks, network
defenders are notoriously poor at sharing information and
collaborating among themselves. To help promote cooperation
among defenders, one requires models that can explain
and make predictions of emergent cooperation decisions of
each defender in a cyber security scenario. We propose a
Multi-Agent Instance-Based Learning (MDIBL-PD) cognitive
model based on Instance-based Learning (IBL) theory, and
founded on the Prisoner’s Dilemma (PD) of cooperation.
MDIBL-PD aims at explaining how collaborations emerge
to share information with other defenders in a group.
MDIBL-PD was created to interact in a Multi-Defender-Game
(MDG) that was used in an experimental study with human
participants, intended to determine the effect of different levels
of information sharing on collaboration. MDIBL-PD uses
an extension of the utility function in IBL theory to capture
the emergence of cooperation with higher levels of social
information. Through simulations with MDIBL-PD we collect
synthetic data to compare to the data set collected in human
studies. Our results help explain the emergence of cooperation
at increasing levels of information regarding others’ actions.
We demonstrate the ability of MDIBL-PD to predict human
cooperation decisions in the MDG in situations in which
players have only their own information and in situations in
which they have information about the sharing behavior of the
other players.
Keywords: Cognitive Modeling; Multi-agent; Cooperation;
Prisoners’ dilemma; Cyber-Security

Introduction
In cybersecurity a major problem is the collaboration and
coordination among defenders to share information on
their vulnerabilities and experienced attacks. Sharing this
information brings a major concern for companies and
organizations: their privacy and competitive advantage can
be damaged if other ill-intentioned people can take advantage
of such information for their own benefit. In other words,
organizations experience a social dilemma, in which there is
a benefit to sharing information, but also put privacy at risk.

Singh, Aggarwal, and Gonzalez (2021) studied this social
dilemma in cybersecurity using a Multi-Defender-Game
(MDG) in human experiments, to learn about the conditions
under which humans share information. MDG is a dynamic
game in which sharing information may influence their future
security and attack probability. Their experimental results

demonstrated a decreasing trend of the average proportion
of group-level sharing. Human participants also tended to
share less after being attacked, suggesting that instead of
making sharing decisions solely based on reciprocity to their
groupmates, participants may also base their decisions on the
breach status, and might erroneously attribute the breach loss
to groupmates.

As suggested by the Hierarchy of Social Information (HSI)
in Gonzalez and Martin (2011), an increase in cooperation
can be promoted by additional levels of information
regarding the other players’ actions and outcomes. Thus,
knowledge about others’ actions and outcomes might make
the associations of reciprocity more clear and direct.
The similarity of other’s predicament to one’s own can
help strengthen a sense of reciprocity and thus lead to
greater cooperation. The HSI proposed an increased
level of social information from having no information
about the others to an increased level of descriptive social
information, where increased information about the complete
interaction structure may result in more effective promotion
of cooperation. Gonzalez and Martin (2011) argued that
ongoing visibility of the payoff matrix can assist in clarifying
the trade-off between short-term and long-term rewards. The
cognitive modeling work in (Gonzalez, Ben-Asher, Martin,
& Dutt, 2015) also suggests that humans tend to consider
the outcome of their opponent, dynamically weighted by their
interaction experience.

In cognitive science, most models focus on the individual
behaviors. Many models aim at studying the cognitive
processes of the attacker in order to inform the defense
strategies (e.g., masking Aggarwal, Thakoor, et al., 2022;
signaling Cranford et al., 2021; anti-phishing Singh,
Aggarwal, Rajivan, & Gonzalez, 2020). Other models
describe the recognition and comprehension processes of
an individual defender (Dutt, Ahn, & Gonzalez, 2011) or
the interaction between attacker and defender (Aggarwal,
Moisan, Gonzalez, & Dutt, 2022). However, there’s a lack
of cognitive modeling for groups of defenders in the context
of cybersecurity.
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(2019) proposed a behavioral framework that theorizes the
association between human behavior and their frequency
and intensity to participate in security information sharing.
However, their analysis focused on the individuals rather
than the interaction among them. A recent review
by (Ask, Lugo, Knox, & Sütterlin, 2021) suggests
that research on cyber threat communication are mostly
interview-based exploratory studies and focused more on
individual-organization interaction and internal collaboration
(Ahrend, Jirotka, & Jones, 2016; Hámornik & Krasznay,
2017).

In what follows, we first describe the
Multi-Defender-Game (MDG) paradigm that reveals
the dynamics of defenders’ sharing tendency in groups
of three over the course of 50 trials. We then formalize a
cognitive model of a defender, built in SpeedyIBL (Gonzalez,
Lerch, & Lebiere, 2003; Nguyen, Phan, & Gonzalez, 2021).
Using the data set collected in a human experiment, we
demonstrate that cognitive models of defenders can be useful
for understanding the factors affecting the continuation and
break down of collaboration and how humans account for the
outcome of others.

Multi-Defender-Game (MDG)
We have developed a Multi-Defender-Game (MDG) for
data collection through human experiments. The MDG is
designed for group experiments. In the MDG there is a group
of defenders (human participants) that play an information
sharing game in a cyber-security scenario. The participants
are assigned in groups of three players, in which they will be
identified as defenders Defender 1, Defender 2, and Defender
3, each of them defending their own network. Initially,
each defender receive 1000 points as an endowment, which
can be used to invest in security to defend their network.
Each defender’s network is independent, some defenders may
be attacked when the others are not and each may have a
different chance of being attacked. Then defenders start the
game and play 50 trials of decision making on sharing/not
sharing information with other defender in the network. The
goal of each defender is to maximize their points in the game.

In each trial t, the defender’s network may or may not
get attacked determined by his Probability of Breach Pbt . If
the defenders’ network gets attacked, then it costs them −30
points (attack status Ct

a = 1). They need to choose to share or
not to share information with other defenders in the network
about the attack/not attack. They will then receive feedback
information after the other two group members make their
decisions.

The cost of information sharing (−15 points) is deducted
from the available points if defenders choose to share
information with others. The defender (receiver) gets
rewarded (35 points) for receiving information from each
other defender. Collectively, the sharing interaction between
two defenders forms a prisoner’s dilemma (table.1). For
example, the payoff in the share-share cell is 20 = 35−15 for

both the column player and the row player. Sharing points
Zt

i of defender i at trial t is the sum of receiving reward
and sharing cost with the other two defenders in their group.
The accumulated reward of player i at trial t of defender i is
given by Eq.1. We assume the information shared is valuable
and it helps the receiver to strengthen their security, thus
information sharing also affects future probability of breach
by Eq.2.

Rt
i = Rt−1

i +Zt
i +(−30) ·Ct

a (1)

Pbt+1 = Pbt −
0.95 ·Zt

i
2000

(2)

Table 1: Payoff matrix

Defender 1 or Defender 2
Share Not-Share

Defender 3 Share 20,20 -15,35
Not-Share 35,-15 0,0

Human Dataset
As a baseline to compare the predictions of our IBL model,
we used a data set collected from human participants who
played together in groups using the MDG. This study
recruited a total of 210 participants (about 46% female) from
Amazon Mechanical Turk, to play a game in groups of 3
participants). On successful completion of the experiment,
all participants received a base payment of $3 and they could
earn up to $1.75 as additional bonuses based on the points
available at the end. The average time taken to complete the
experiment was 15 minutes.

The data set consists of two experimental conditions
defined based on the information given to the participants
regarding the sharing information of the other defenders
in their group. The information levels were: Own and
Others, where the Own condition provided only information
on the actions of the other defenders in the group; while the
Others condition also provided the outcomes of others and
their breach status. Participants received this information in
table 2 where the sharing decisions of each defender in the
group, including the protagonist defender, were displayed in a
separate column. The table also included their breach status,
when this information was shared by the other defenders in
the group. A total of 102 participants (34 groups) were in
the Own condition, and 108 participants (36 groups) in the
Others condition.

Instance-Based Learning Model of Defender’s
Collaborations

We propose an Instance-Based Learning (IBL) cognitive
model to make predictions about human sharing behavior
in the MDG, at different levels of information. The model,
Multi-Defender IBL - Prisoner’s dilemma (MDIBL-PD),



Table 2: An example output table provided as feedback in the Others condition of the (Du et al., n.d.) experiment

Defender 3 Decision (Me) Defender 1 Decision Defender 2 Decision
Information not shared with Defender 1,
Information shared with Defender 2

Defender 1 shared information with me,
He was attacked Defender 2 didn’t share any information

My Payoff with Defender 1 : 35
Defender 1’s Payoff with me : -15

My Payoff with Defender 2 : 0
Defender 2’s Payoff with me : 0

is based on a model of individual learning and decisions
from experience in repeated two-player prisoner’s dilemma
(Gonzalez et al., 2015), and expands that concept to a
multiplayer situation beyond a dyad. Like all IBL models,
the MDIBL-PD model relies on the IBL Theory (i.e., IBLT)
(Gonzalez et al., 2003), a well-known cognitive theory of
experiential decision making. The key idea of this theory
is that decisions are made by recognition of similar past
experiences, their integration into the generation of expected
utility of decision alternatives, and the selection of the
alternative with the maximal expected utility. An IBL model
can accurately represent the content of human memory,
recognition, learning, and recall of experiences in decision
making.

The IBLT process and mechanisms are general to every
IBL model. These have been published in the past, but
we repeat the mathematical formulations of the theory here
for completeness. In IBLT, an “instance” is a memory unit
that results from the potential alternatives evaluated. These
memory representations consist of three elements that are
constructed over time: a situation state s that is composed
of a set of characteristics f ; a decision or action a taken
corresponding to an alternative in state s; and an expected
utility or experienced outcome x of the action taken in a state.
Concretely, for an IBL agent, an option k = (s,a) is defined
by the action a in the state s. At time t, assume that there are
nkt different instances (ki,xikit) for i = 1, ...,nkt , associated
with k. Each instance i in memory has an activation value,
which represents how readily available this information is in
memory (Anderson & Lebiere, 1998). Here, the equation
captures recency, frequency, similarity, and noise in memory.

Λikit = ln

(
∑

t ′∈Tikit

(t− t ′)−d

)
+α∑ j Sim j( f k

j , f ki
j )+σ ln

1−ξikit
ξikit

,

(3)
where d, α and σ are the decay, mismatch penalty, and

noise parameters, respectively, and Tikit ⊂ {0, ..., t−1} is the
set of the previous timestamps in which the instance i was
observed, f k

j is the j-th attribute of the state s, and Sim j
is a similarity function associated with the j-th attribute.
The rightmost term represents noise to capture individual
variation in activation, and ξikit is a random number drawn
from a uniform distribution U(0,1) at each step and for each
instance and option.

The activation of an instance i is used to determine the
probability of retrieving an instance from memory. The
probability of an instance i is defined by a soft-max function:

Pikit =
eΛikit/τ

∑
nkt
j=1 eΛ jk jt/τ

, (4)

where τ is the Boltzmann constant (i.e., the “temperature")
in the Boltzmann distribution. For simplicity, τ is often
defined as a function of the same σ used in the activation
equation τ = σ

√
2.

The expected utility of option k is calculated based on
Blending as specified in the choice tasks:

Vkt =
nkt

∑
i=1

Pikitxikit . (5)

The choice rule is to select the option with the maximum
blended value.

MDIBL-PD model of Information Sharing
The IBL model of the individual defender is primarily
concerned with the learning processes determined by the
various levels of information available to the model. We
denote the within-group defender index as x ∈ {1,2,3} and
their sharing decisions as Dx ∈ {C(Share),D(Not-Share)}.

The new MDIBL-PD model was developed for both the
own and others information conditions described above.
Each IBL agent in the MDIBL-PD model makes decisions
using the same procedure defined in the previous section.
The human participants in the condition Others receive
information on the outcome and the breach status of other
players (Table 2). To capture this interdependence, we
modified the blending equation (Eq.5) to account for the
outcome of the other player, as suggested in (Gonzalez et al.,
2015).

Actions a: In the MDG, the choice options are defined by
the actions that each defender can take. The defender Dx
can choose not to share information, to share information
with one or both of the other defenders, denoted as None,
D(x+1) mod 3, D(x+2) mod 3, Both.

State St
i: The situation state of the defender

consists of four attributes: the breach status Ax ∈
{1(attacked),0(safe)}, probabilityo f breach(Pbt

i), and
the expectation of receiving information from each player
(Et

Dx
). Thus, the situation state s of participant i (Defender x)

at trial t is st
i = (At

i,Pbt
i,E

t
D(x+1) mod 3

,Et
D(x+2) mod 3

).
Breach status At

i and probability of breach Pbt
i have direct

and indirect affect on the outcome of a trial, thus are included
as the context information whose pure appearance might



affect human’s information sharing tendency. As suggested
by (Zhang, Lin, Jing, Feng, & Gu, 2019), beliefs and behavior
correlate within rounds in repeated prisoners’ dilemma game,
and beliefs in one round vary with behavior in the previous
round. Thus, we include Et

Dx
to capture the association

between the expectation of receiving information from peers
and the decision of whether to share information with
them. It is approximated with the accumulated proportion of
receiving information from Dx (Eq.6). Here, we assume that
participants can keep track of the interaction experience with
their peers. This assumption can be relaxed by manipulating
the window of proportion calculation. After receiving the
actual sharing decisions at the trial t, the Et

Dx
slots will be

updated to T t
Dx

to store the real interaction experience in
memory. When the expectation Et

Dx
is closer to 1, memory

instances of receiving information from peer x (T t ′
Dx

=
1, t ′ ∈ [0, t)) have greater similarities to the current situation,
resulting in higher activation values (3), and higher likelihood
to be recovered (4). Similarly, when the expectation Et

Dx
is

closer to 0, memories of defected by peer x (T t ′
Dx

= 0, t ′ ∈
[0, t)) are more likely to be retrieved. The similarity of these
numeric attributes is calculated linearly and normalized to
[0,1].

Et
Dx =

∑
t−1
i=0 T i

Dx

t−1
(6)

Utility U t
x: Depending on the experimental condition, the

players in the MDG received only information on their
own actions (Own) or about the sharing decisions of other
defenders and the effect on their outcome of themselves
(Others). Therefore, the utility of the defender x in the trial t
is the points gained or lost exclusively at that trial, constituted
with the benefit of receiving information (35 points), the cost
of sharing information (−15 points) and the cost of being
attacked (Eq.7). The cost-benefit of information sharing
forms the dyadic prisoner’s dilemma as shown in Table 1.
The cost of the breach is included as part of the utility, since
the status of the breach has an effect on the sharing decisions
of human defenders.

U t
x = ∆

t
x = Zt

x +(−30) ·At
x (7)

U t
x = ∆

t
x +wt

1 ·∆t
(x+1) mod 3 +wt

2 ·∆t
(x+2) mod 3 (8)

wt
1 =

1−Surpriset
1

2
(9)

wt
2 =

1−Surpriset
2

2
(10)

To simulate how humans account for the outcome of
others, the utility for the blended value calculations is set
as the weighted sum of the point update of the defender
Dx and his peers (Eq.8). Inspired by the notion of Social
value orientation (SVO) (Balliet, Parks, & Joireman, 2009), w
represents the degree to which a player is willing to consider
the outcome of the other player for each option when making
a decision that maximizes the gains in each trial.

Research in (Gonzalez et al., 2015) finds that the dynamic
w dependent on individual experiences can best explain

human cooperation behavior. Under this hypothesis, a player
will account for the outcome of the opponent as a function
of a normalized gap between expected and actual outcomes
(surprise). The value of wt

i (with respect to the opponent’s
outcome in the trial t) will be reduced by surprise (Eq.9
and Eq.10). We assume that the players evaluate the benefit
of sharing information with each other independently with
different weights, updated according to separate surprises
and gaps.

The normalization of surprises limited the value of
Surpriset

i within the range of [0,1], the value of wt
i within

[0,0.5], and the sum of weights on the benefit of others
within [0,1]. This formulation assumes that the way a player
accounts for the opponent’s outcomes will vary between
extreme selfish when wt

1 = wt
2 = 0 and extreme fairness when

wt
1 = wt

2 = 0.5.

Surpriset
i =

Gapt
i

[Mean(Gapt
i)+Gapt

i]
(11)

Gapt
i = Abs(V t−1

j − (Xi j +Oi j)) (12)

Mean(Gapt
i) = Mean(Gapt−1

i )(1− 1
50

)+Gapt
i(

1
50

) (13)

Pre-Population: From human data, we observed that
more than 70% of the human participants chose to share
information with both peers at the beginning. (Andreoni
& Miller, 1993) show that some fraction of the population
actually has altruistic motives. This ingrained tendency to
share between human subjects can be the consequence of
the experience of cooperation in recent years, or it could be
an experimental effect of human participants who expected
to cooperate in a Multi-Defender Collaboration Game. To
capture this preference, and inspired by the conclusion in
(Kelley & Stahelski, 1970) that there are two stable types
of individuals that can be described as cooperative and
competitive, we prepopulate the IBL agents with instances
that represent these initial tendencies. 70% of IBL agents
are prepopulated with Share instances with positive rewards
(0, 20, 40 for zero, one, two sharing - receiving with peers),
while 30% of IBL agents are prepopulated with Not-share
instances with negative rewards (0, −15, −30 for zero, one,
two sharing - not receiving with peers). Cooperatively biased
agents and defectively biased agents are randomly formed
groups of three. Each group contains random number (0
to 3) of cooperatively biased agents. The assumption is
that the decrease in the proportion of information sharing
is caused by the pairing of cooperative participants with
defective participants.

Simulation Procedure: The MDIBL-PD model with
default parameters was run for 100 simulated groups of
players in each of the two information conditions. Each
group plays the game for 50 trials. The utility assignment for
Own condition follows Eq.7. The utility for Others condition
follows Eq.8 with w1,w2 defined by Eq.9 and Eq.10.



Dependent Measures: We calculate the overall proportion
of sharing in Own and Others conditions, the proportion of
sharing with Both, One, or None of the other defenders, and
the sequential dependencies that emerged from the interaction
between IBL agents in a group (Martin, Gonzalez, Juvina, &
Lebiere, 2014). Sequential dependencies measures include:
Mistrust, the decision a player makes to defect at time t, after
both players mutually defected at time t−1; Forgiveness (Not
Share - Share), the decision to continue cooperating at time
t, although mutual cooperation was not achieved due to the
defection of the other at time t−1; Abuse (Share - Not Share),
the decision to continue defecting at time t after a profitable
defection at t − 1; and Trust, the decision to continue
cooperating at time t, after successful mutual cooperation at
time t − 1. To assess the precision of the predictions of the
model with respect to human data, we calculated the mean
squared deviation (MSD) using the average of the dependent
measure (e.g., the average proportion of cooperation per trial)
and using the Pearson correlation coefficient (r) to assess the
similarity of time trends between the model and human data.

Results
Overall Information Sharing
Figure 1 illustrates the proportion of sharing for the
MDIBL-PD model compared to human data in the conditions
Own and Others conditions over the course of 50 trials.
The proportion of sharing in human data is higher in
the Others condition (Mean=0.74, SD=0.44) than in the
Own condition(Mean=0.59, SD=0.49). As shown in Fig.1,
the MDIBL-PD model captures these observed trends very
accurately. The MSD between human data and model data in
Own condition is 0.0029, with r = .86, p < 0.001. The MSD
in Others condition is 0.0022, with r = .76, p < 0.001.

Figure 1: Overtime Sharing Proportion for the Own
condition (left panel) and the Others condition (right panel)

Proportion of sharing with None, One or Both
Figure 2-Top panel, represents the proportion of information
sharing with both one and none of the other players in the
Own condition. More than 70% human participants choose
to share with Both peers at the beginning. The proportion
decreases over time, and some participants shift to sharing

with One of the peers, and more participants choose to share
with None. Most importantly, in the Own condition, where
participants only receive feedback about their own actions
and outcomes, the proportion of sharing with none of the
other players increases over the 50 trials.

The model is able to approximate the trends of three types
of options accurately. As shown in Fig.2, the deviation
between human and model in the proportion of sharing with
Both, One, and None is trivial, especially for the None option
with (MSD = 0.0029,r = .86, p < 0.001). We note that the
model seems to show a stronger preference for sharing with
One, while human participants share more with Both. A
possible explanation is that a fraction of human participants
are altruistic or are trying to build an altruistic reputation by
indiscriminately sharing with Both. The model’s decisions,
driven by the utility exclusively, converge relatively quickly
to the more rewarding options, i.e., sharing with the more
reciprocal peer.

Figure 2: Sharing proportions with Both, One, or None of
the other players for the Own condition (top panel) and the

Others condition (bottom panel)

Figure 2-Bottom panel, represents the proportion of
information sharing with both, one and none of the other



players in the Others condition. The model can account for
the dynamics of choosing three types of option (Both: MSD=
0.0.0041,r = .86,P < 0.001, One: MSD = 0.0069,r =
.58, p < 0.001, None: MSD = 0.0049,r = .64, p < 0.001).
Similar to Own condition, human participants demonstrate an
initial preference to share with Both other players. Although
still increasing, the upward trend of sharing with None is
more flat, indicating that the information of the actions and
results of others is effective in maintaining cooperation.

Sequential Dependencies
Fig.3-Left panels demonstrate the comparison between
human and model in terms of sequential dependency metrics
in Own condition. The model fits Mistrust, Trust, and
Forgiveness reasonably well with a significant positive
correlation with human data (Trust: MSD = 0.0203,r =
.55,P < 0.001, Mistrust: MSD = 0.0052,r = .92, p < 0.001,
Forgiveness: MSD= 0.0207,r = .83, p< 0.001), but exhibits
approximately 25% more Abuse than human players (MSD =
0.0708,r = .16, p > 0.05).

Similarly, Fig.3-Right panels show that the model matches
human behavior for the Others condition in terms of Mistrust
(MSD= 0.0158,r = .85, p< 0.001) and Forgiveness (MSD=
0.0404,r = .80, p < 0.001), but deviates on Trust (MSD =
0.0291,r = .12, p > 0.05) and Abuse (MSD = 0.0583,r =
.36, p > 0.05). The model is still more likely to Abuse
and Forgive than humans. Defect is getting increasingly
rewarding as the game progresses, and it becomes more
affordable to lose a cooperator.

Discussion
In this paper, we propose a cognitive model that represents
the dynamics of cooperation among defenders in a
multi-defender game. The MDIBL-PD model builds on and
advances the model proposed in (Gonzalez et al., 2015) for a
dyad playing the PD game. The model proposes that direct
information on the actions of others, whether they share or
not with the own player, will influence the emergence of
cooperation in the group. The outcomes of the other players
in the group are used by each player to make their own
decisions. However, the outcomes of the other players are
only considered to a certain extent (i.e., "w"). The main
insight from (Gonzalez et al., 2015) is that such "w" is
dynamic and depends greatly on how the other players behave
with the own player in each round of the game. That is, the
regard that the self gives to others depends on the dynamic
behaviors of others. This idea was used in the MDIBL-PD
model and simulation results were produced to replicate the
conditions of an experiment carried out with human data.

The results demonstrate that the model performed similarly
to the actions taken by humans. First, with more information
on Others, individuals share information more often in the
MDG. Second, humans tend to decrease the proportion of
sharing with both players and increase the proportion of their
no-sharing behavior over time. This happens particularly in
the Own condition. There are also some differences between

Figure 3: Sequential dependencies in the Own condition (top
panel) and the Others condition (bottom panel), showing
Trust, Mistrust, Abuse, and Forgiveness behaviors of the

model and human participants

the model’s predictions and human data. For example, in the
Own condition, the model initially tends to share more with
one of the other players. The model also shows a higher
proportion of "abuse" of the other players, defined as the
proportion of defections (not sharing) the model makes after
the other player has cooperated (shared). It seems that the
model is more "selfish" than humans are regardless of the
level of information, as clearly the level of abuse in the model
is higher than that of human participants.

Sequential dependencies also indicate that humans have
difficulty sharing information with other players, increasing
the level of mistrust of other players over time. This pattern
is particularly strong in the Own condition, and the model
replicates such trends.

Future research will explore more of how to account for
others’ decisions while making decisions, for example the
surprise and w values to explain human behavior. We will
also look at the triads in more detail and see the proportion of
sharing with each of the two other players.
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