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Introduction
Traditionally, evidence accumulation in multialternative de-
cision making is modeled by the Markov random walk pro-
cess (MRW) (Roe, Busemeyer, & Townsend, 2001; Usher &
McClelland, 2001; Bhatia, 2013; Noguchi & Stewart, 2018,
2018). Despite their all-around successes, these MRW mod-
els are challenged by recent evidence of Markov violations
in evidence accumulation including interference effects of
choice on confidence for multistage decision making (Kvam,
Pleskac, Yu, & Busemeyer, 2015), interference effects of con-
fidence on confidence (Busemeyer, Kvam, & Pleskac, 2020),
and order effects in experimental test of attraction effects
(Trueblood & Dasari, 2017).

On the other hand, the quantum walk process (QW)
(Busemeyer, Wang, & Townsend, 2006; Wang, Solloway,
Shiffrin, & Busemeyer, 2014) explain these Markov viola-
tions in a natural way. However, QW models have only been
applied to binary alternative decision making, and this raises
the questions of whether we can extend existing QW models
to explain both Markov violations and traditional context ef-
fects in multialternative decision making. Our goal here is to
present a general framework for this potential extension.

Quantum walk model for binary alternative
Quantum walk (QW) is the quantum analogy of Markov ran-
dom walk (MRW) which, instead of describing the time evo-
lution of an initial probability distribution, describes that of
an initial probability amplitude distribution. The quantum
time evolution is governed by Schrödinger’s equation:

d
dt

ψ(x, t) =−i ·H ·ψ(x, t), (1)

where ψ is the probability amplitude distribution (quantum
wavefunction), and H is the Hamiltonian operator in analo-
gous with the Markov transition rate matrix. For discrete-
finite-state quantum walk, H can be written in the following
N ×N matrix form:{

H(i, i) = u(i), for 1 ≤ i ≤ N
H(i+1, i) = H(i, i+1) = σ2, for 1 ≤ i ≤ N −1, (2)

where u(x) denotes the potential function, and σ2 is the
diffusion rate that describes the effect of a constant non-
conservative force acting on the system. The solution to
Schrödinger’s equation gives:

ψ(x, t) =U t ·ψ(x,0) = e−i·H·t
ψ(x,0), (3)

where U = e−i·H denotes the quantum unitary operator. In
binary alternative decision making problem to which QW is
previously applied (Busemeyer et al., 2006), ψ(x, t) can be
viewed as a probability amplitude distribution over the confi-
dence states. u(x) = αx+β is modeled by a linear function
with drift parameter α.

Multi-alternative quantum walk framework
The multi-alternative quantum walk model (MQW) is in-
spired by the existing QW model for binary choice decision
making and MRW models that use multiple accumulators to
explain multialternative decision making. MQW is defined
by (1) initial state, (2) Hamiltonian that describes how the
initial state evolves (3) stopping conditions.

Initial state Suppose there are N ≥ 3 alternatives to choose
from, we define N initial states with ψ(x,0)m being the state
for the mth alternative. The aggregated initial state is written
as a direct sum:

ψ(x,0) =
N⊕

m=1

wm ·ψ(x,0)m, (4)

where wm with ∑
N
m=1 |wm|2 = 1 models the attention weights

to each alternative. By the definition of direct sum, if each
ψ(x,0)m is of dimension P×1, then ψ(x,0) will have dimen-
sion NP×1.

Hamiltionian To describe the time evolution, for each of
the alternatives denoted as Am, we define N Hamiltonian ma-
trices, where the qth of such denoted as Hm,q has dimension
P×P. This Hm,q represents how evidence accumulation of al-
ternative Am influences evidence accumulation of alternative
Aq, and thus can be used to model context effects in multial-
ternative decision making. For example, in the case of sim-
ilarity effects, accumulating evidence in favor of Am inhibits
accumulating evidence in favor of the similar alternative Aq,
and thus time evolution described by Hm,q will decrease Aq’s
confidence rating. In cases when Am and Aq are independent,
Um,q = e−i·Hm,q will be the identity matrix, and Hm,q will thus
be the zero matrix.

According to equation 2, we need to define a potential
function um,q(x) and a diffusion rate σm,q for each Hm,q. Sim-
ilar to Busemeyer et al. (2006), we make σm,q a free param-
eter, and um,m(x) = αm,mx+ βm,m a linear potential function
with free parameters αm,q and βm,q. To further constrain the
number of parameters, we make σm,q = σq for each alterna-
tive Aq, which means that the diffusion effect on Aq is in-
dependent of Am. In the most general case, there will be a



Figure 1: Mean confidence ratings as a function of time of an
example model with three choices. Mean confidence ratings
are computed as the mean of the confidence rating distribu-
tion at each time point T . The three choices are assumed
to be independent (all Um,q for m ̸= q are identity matrices).
The two stopping conditions are illustrated by the red lines.
Mean confidence as a function of time of an example Markov
model for choice 1 is also plotted. Compared with the Markov
model, the quantum model shows an oscillating mean confi-
dence rating.

total of (2N+1)N parameters to fit, though in many cases the
model can be further constrained.

With these Hm,q, we then define the general Hamiltonian H
with dimension NP×NP for the entire system as

H(ε) =
N

∏
i=1

Hε(i) =
N

∏
i=1

N⊕
q=1

Hε(i),q, (5)

where ε is a permutation function of the N alternatives
(eg. ε(1) = 2 means the alternative A2 evolves first), Hm =⊕N

q=1 Hm,q is the NP×NP Hamiltonian for alternative Am in
the direct sum space.

Since the Hm matrices may not commute with each other
when multiplied, the general Hamiltonian matrix H would
have been different for different permutations ε. Thus, MQW
can explain order effects by using different ε to model the
different orders of presentation of the alternatives. Besides,
since MQW directly inherits from QW, it is also capable
of explaining interference effects as QW does in the binary
choice case.

Stopping condition Finally, we need to define two stop-
ping conditions in analogous to that in multi-alternative de-
cision field theory (Roe et al., 2001). The first stopping con-
dition is a common boundary defined by some P × P pro-
jection matrix for each alternative to compute response time
distribution without time pressure, and the second condition
models how people choose among the alternatives under time
pressure (see Figure 1). To compute the choice probability,
we first define random variables Cm that describes the current

confidence level of the alternative Am, and C as the set of all
such Cm for each alternative. The choice probability of Am at
time T is then computed as

P(Am|T ) = P(Cm = max(C)) (6)

Conceptually, the above means that the probability of choos-
ing Am is the probability that Am is the most confident alter-
native to be chosen at time T .

Future works
Despite the benefits of MQW framework in predicting jointly
Markov violations and context effects, we acknowledge that
this framework has not yet been fully adapted to multialter-
native decision making. Future works are needed to define a
model that builds on this framework and connects its param-
eters with the subjective values of different attributes of the
alternatives and expected utilities of the multiple alternatives.
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