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Abstract

Argumentation is a widely studied topic in philosophy, psy-
chology, and AI. In this paper, we are particularly interested in
its psychological implications. According to Mercier and Sper-
ber argumentation is the means for human reasoning. Here, we
will investigate how the context plays a role in the argumenta-
tion process and bridges to lower levels of cognition. For this
purpose the relevant knowledge within a given context deter-
mines the choice of the arguments by applying the spreading
activation theory of memory. Relevant knowledge can be fac-
tual, conditional or hypothetical and, when in conflict, might
have different strengths in relation to each other. We propose
three comparison mechanism for choosing the winning argu-
ment for a given position. Different than in computational ar-
gumentation, we are not interested in an exhaustive search for
arguments, but a guided process determined by the given con-
text. By using the cognitive architecture ACT-R we specify this
process through the spreading activation of chunks. Finally,
we implement two models of conditional reasoning within the
cognitive architecture ACT-R and evaluate them with the re-
sults of a famous reasoning task.

Introduction
Cognitive theories of reasoning investigate how humans rea-
son to understand, model, and eventually predict their de-
cisions. The adequacy of these theories is usually assessed
by comparing their predictions to the experimental results of
typical reasoning tasks (e.g., Byrne (1989), Wason (1968))
and by developing new experiments. Most of these reasoning
tasks are designed as follows: Given some (causal) informa-
tion, for instance in form of conditional sentences, such as “if
A, then B” together with a set of given premises, humans are
asked what can be concluded from this information.
According to Newell’s (1990) classification of human expe-
rience and information processing mechanisms into the four
bands of cognition, conditional reasoning might best be clas-
sified between the cognitive and rational bands. To facilitate
the different aspects of human behavior into various levels
(or bands) of cognition, Newell suggested the development
of cognitive architectures. This proposal implied that differ-
ent fields in the area of cognition need to link their work to
each other. Cognitive architectures provide a formal specifi-
cation of the structure of the brain, the functions of the mind,
and how the structure explains the function, guided by the
findings from decades of research. Within these cognitive ar-
chitectures, the cognitive processes are organized as modu-
lar entities coordinated within one environment thus simulat-
ing human cognition. Even though bridging the gap between

Newell’s bands of cognition is still an open problem, the
developed cognitive architectures (e.g. ACT-R (Anderson,
2007), SOAR (Laird, 2012)) had a significant contribution
on providing formal methodologies.
In this paper, we will investigate conditional reasoning, where
we are mainly interested in three aspects: (i) how do humans
understand conditionals in the given context, (ii) how do they
infer new information from that context, and (iii) how can
(i) and (ii) be implemented such that they account for exist-
ing theoretical findings of lower levels of cognition. For ad-
dressing (i) and (ii), cognitive argumentation is chosen as the
theoretical foundation, where well-known cognitive phenom-
ena are formalized as cognitive principles and conclusions are
derived based on the dialectic argumentation process. Argu-
ments are usually understood symbolically. Yet, the process
of building and choosing them, and then deciding which ar-
gument wins seems to be heavily guided by biases or heuris-
tics, influenced by the given context, which might partially
be modeled statistically. By exploiting the probabilistic func-
tions in the cognitive architecture ACT-R (Anderson, 1990;
Anderson, Byrne, Douglass, Lebiere, & Qin, 2004), we im-
plement argumentation-based reasoning guided by chunk ac-
tivation.
Finally, two models of argumentation-based reasoning in
ACT-R will be presented and evaluated to data from the well-
known Byrne’s (1989) suppression task.

Related Work
Various (non-classical) logic-based approaches for condi-
tional reasoning have been proposed in the past (Braine,
1978; Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991;
Rips, 1994; Polk & Newell, 1995; Stenning & van Lambal-
gen, 2008; Dietz, Hölldobler, & Ragni, 2012). However, only
a few of them (Braine, 1978; Rips, 1994; Johnson-Laird,
1983; Johnson-Laird & Byrne, 1991; Chater & Oaksford,
1999) proposed a theory on the (internal) reasoning process
itself. Up to now, only the (mental) model theory (Johnson-
Laird, 1983; Johnson-Laird & Byrne, 1991) and some rea-
soning tasks have been embedded into ACT-R (Khemlani &
Trafton, 2012; Ragni & Brüssow, 2010; Ghosh, Meijering, &
Verbrugge, 2014).
Addressing the question of how humans integrate what is
known and what is conjectured or observed to what is in-
ferred to explain has been addressed by Weick (1995), who



proposed the theory of Sensemaking. Sensemaking is about
the process to search for contexts that make sense.
Lebiere et al. (2013) proposed computational models that
specify how observed sensemaking behavior can be pro-
duced from elementary cognitive processes and modules.
Among other aspects, they considered the process of in-
formation gathering and hypothesis updating. The authors’
goal is to identify and understand the core mechanisms of
cognitive biases generally. A sensemaking model for in-
tuitive decision-making employing instance-based learning
has been proposed by Thomson, Lebiere, Anderson, and
Staszewski (2015). In the following section, we will briefly
point to similarities between argumentation and sensemaking.
A generally observed problem in the field of Cognitive Sci-
ence is that many ad-hoc formulations of domain-specific
models exist and therefore Thomson et al. (2015) suggest
driving the field of cognitive modeling to the generalizabil-
ity of models. Salvucci (2013) has addressed this aspect
by integrating models through cognitive skill acquisition. In
the PRIMs architecture, cognitive processes can be reused
such that they are applicable in many different combina-
tions (Taatgen, 2013). Serving a similar purpose for the case
of reasoning, in this paper we will introduce cognitive prin-
ciples, which are formalized task-independent assumptions
made by humans.

Cognitive Argumentation
Experiments by Mercier and Sperber (2011) have shown evi-
dence that humans arriving at and justifying claims seems to
be done through the construction of arguments. They state
that arguments are the means for human reasoning. With-
out expanding on the formal details, we will here briefly in-
troduce the theoretical foundation of our approach, Cogni-
tive Argumentation (Dietz Saldanha & Kakas, 2019; Dietz &
Kakas, 2020, 2021), where reasoning (or inference) is based
on a dialectic argumentation process. In Cognitive Argumen-
tation, argument construction is guided by cognitive prin-
ciples. These arguments are built from argument schemes,
which represent general links between information.
We will first introduce the relevant cognitive principles and
then illustrate the dialectic argumentation process by an ex-
ample.

Cognitive Principles
Cognitive principles are assumptions that humans make while
reasoning. The specification of such principles helps us to ex-
plain why humans come to certain conclusions in particular
when they diverge from valid conclusions in classical logic.
Furthermore, the notion of a cognitive principle allows us to
understand and distinguish between different types of reason-
ers.
The first two principles, maxim of quality and maxim of rel-
evance are motivated by Grice’s (1975) conversational impli-
cature. The maxim of quality states that, if there is no reason
to assume differently, humans believe that what they are told

as factual information, is true (∆fact). The maxim of rele-
vance states that humans believe what they are told is rele-
vant (∆hyp). This maxim applies when humans perform some
hypothesis generation to infer consequences, not based on
facts, but based on what hypothetically could be true or false.
The principles of necessary ( n

 ) and sufficient conditions
( s
 ), are motivated by Byrne, Espino, and Santamarı́a (1999)

and Byrne (2005): Consider the conditionals If she meets a
friend, then she will go to a play and If she has enough money,
then she will go to a play. In the first conditional, she meets
a friend is sufficient support for she will go to a play. This
is a sufficient condition. For the second conditional, she has
enough money can be understood as a necessary condition,
i.e. the negation, she does not have enough money is plausi-
ble support for the negation of the conclusion, she will not go
to the play. Together with the cognitive principle of hypothe-
sis generation, the hypothesis that she does not have enough
money functions as a disabling condition to the modus po-
nens conclusion that she will go to a play. Similarly, given
that If she has free tickets, then she will go to the play, the hy-
pothesis of the sufficient condition she has free tickets func-
tions as an alternative condition and discards the condition
she has enough money as necessary for the conclusion she
will go to the play. This classification of necessary and suffi-
cient conditions is dynamic and strongly depends on the con-
text.
Different from valid inferences in classical logic, humans
have the ability to reason from observations to explanations,
which is sometimes called abduction. Abductive reasoning
is motivated by the maxim of inference to the best expla-
nation (Peirce, 1903). Additionally, the plausibility of ex-
planations increases or decreases by setting them in contrast
to the alternative explanations. So might the support for one
explanation discount the support for the alternative explana-
tions (Kelley, 1973; Sloman, 1994).
If contradictory information is given, and if there is no ob-
vious information that can be discarded, then, according
to Wason (1964), humans might reconsider the given infor-
mation, and a valid inference from some arbitrary or general
assumption will be given up in favor of a fact (Johnson-Laird,
Girotto, & Legrenzi, 2004). This observation will be called
the conflicts in reasoning principle and motivates the follow-
ing relative strength relation among the cognitive principles:
hypotheses (∆hyp) are the weakest, whereas facts (∆fact) are
the strongest. Derivations from necessary conditions ( n

 ) are
stronger than derivations from sufficient conditions ( s

 ).

Dialectic Argumentation Process
We informally introduce the dialectic argumentation pro-
cess (Baroni, Gabbay, Giacomin, & van der Torre, 2018):
Step 1. Construct a root argument supporting the conclu-
sion of interest, Step 2. Consider a counter-argument, Step 3.
Find a defense argument, Step 4. Check if the defense argu-
ment is not in conflict with the root argument (in Step 1), Step
5. Add the defense argument to the root argument, Repeat
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Figure 1: The dialectic argumentation process is guided by cognitive principles. Acceptable arguments are in green and
non-acceptable arguments in red. ↑ shows attacks and/or weak defenses and ⇑ show strong attacks and/ or defenses.

from Step 2. This process is repeated until no other counter-
arguments (step 2) can be found. The extended root argu-
ment is then the acceptable argument supporting the conclu-
sion of interest. Informally, conclusions follow credulously
when they are supported by acceptable arguments. They fol-
low skeptically when they are acceptable and there are no ac-
ceptable counter-arguments.
The intuition of this process will now be illustrated with the
help of the previously introduced examples and Figure 1:
Given If she meets a friend ( f ), then she will go to a play
(p), assume that the condition is both sufficient ( f s

 p) and
necessary ( f n

 p). Further, assume that we are given the fac-
tual information that She meets a friend (Figure 1, left). Let
us start with the position that She will go to a play: 1. We
build the (strong) argument ∆

f
f s
 p

for p, from the fact that f

and that f is a sufficient condition for p (1, p). 2. We build the
counter argument ∆ f , f n

 p from the hypothesis that She does

not meet a friend ( f ) and that f is (also) a necessary condi-
tion for p. 3.-4. However, ∆ f is a defense argument against
∆ f , f n
 p , as f is a (strong) fact. 5. The new argument for

p stays ∆
f
f s
 p

as f is already part of the root argument. The

only counter-argument left is f against which ∆ f is trivially
a strong defense (repeat). Finally, the root argument ∆

f
f s
 p

is

an acceptable argument for the conclusion p.
Next, let us consider the arguments for p, which can only be
built from the hypothesis p, ∆p, or ∆ f , f n

 p (1, p). ∆
f
f s
 p

and

∆ f are (strong) attacks against which ∆p and ∆ f , f n
 p cannot

defend against. There is no acceptable argument for p, thus p
is a skeptical conclusion.
Let us consider the argumentation processes when we addi-
tionally receive the information that If she has enough money
(m), she will go to a play (p), where she has enough money
is a necessary condition for she will go to the play (m n

 p).
(Figure 1, right): 1. Starting with, (1, p) ∆

f
f s
 p

is a strong

argument for p. 2. The attack ∆m,m n
 p is built from the new

conditional m n
 p and the hypothesis that she does not have

enough money 3.-4. which can be defended against with the
hypothesis that She has enough money (∆m). 5. This defense
argument is added to the root argument, and defends against

all its attacks (∆ f
f s
 p

∪∆m): This is an acceptable argument

for p.
Consider now the process for the opposing position: 1. The
(strong) argument for p is ∆m,m n

 p. 2. ∆
f
f s
 p

attacks ∆m,m n
 p,

however 3.-4. ∆m,m n
 p can defend itself against ∆

f
f s
 p

, as nec-

essary conditions (m n
 p) are stronger than sufficient condi-

tions ( f s
 p). ∆m,m n

 p is also an acceptable argument for p:
Both p and p are credulous conclusions.

Sensemaking We can draw parallels between the theory of
sensemaking (Klein, Moon, & Hoffman, 2006) and the argu-
mentation process, where sensemaking models can be anal-
ogously understood as arguments considering the description
given by Klein, Phillips, Rall, and Peluso (2007)[115]. Ini-
tially, humans generate just-in-time mental models (i.e. local
cause-effect connections) to explain events (Step 1). They
then elaborate and question that model with inconsistencies
(Step 2), fixate on the initial model, eventually discover in-
adequacies and compare alternative(s) (Step 3), reframe the
initial model, and (if applicable) replace the model with an-
other one (Step 4 and 5).

Guided Argumentation Process
It does not seem plausible, that humans rigorously follow
such a step-wise procedure as described above but it is more
likely that they are guided by some heuristics, which might
depend on e.g. their simplicity, their strength, and their rel-
evance in the context. In the following, we address this as-
pect by realizing a guided dialectic argumentation process in
ACT-R.

Argumentation in ACT-R
Two ACT-R models based on the theory of Cognitive Argu-
mentation are presented in this section. The structure of both
models is shown in Figure 2.

Tasks
The proposed models implement three tasks, read, argue and
respond, where the last two is each specified with one control
state. Model I follows sequentially the tasks, whereas the
read and argue tasks in model II are intertwined.



Figure 2: Model I (left) and model II (right), where each (yellow) block in the middle (between the imaginal buffer and the
declarative memory) represents a production rule. The background colors in the models correspond to the ACT-R modules on
the right to top of the right model.

Background Knowledge
Model I (Figure 2, left) stores the conditions as either nec-
essary or sufficient in the declarative memory whereas in
model II (Figure 2, right) this information is derived from the
production rules. This classification determines which argu-
ments are going to be considered relevant in the argue task.

Model I The production rules activate fact and
activate sentence contain the following structure:

=imaginal> =imaginal>
fact =fact sentence =sentence
==> ==>

+retrieval> +retrieval>
word =fact word =sentence

A chunk will be retrieved having a slot context contain-
ing either the chunk SUFFICIENT or NECESSARY. Figure 2,
left, DECLARATIVE, gives two examples of such chunks
(TEXT-SUF or TEXT-NEC). In the next step, this SUFFICIENT
or NECESSARY chunk is placed in the imaginal buffer (Fig-
ure 2, left, IMAGINAL). This activation spreads to the chunk
arguments (e.g. ARG-1 or ARG-2) which either contain the
chunk SUFFICIENT or NECESSARY in their context slot.

Model II The read production rules in Figure 2, right, (e.g.
read fact) all contain either the elements on the left or on the
right:

=visual> =visual>
value ... value ...
==> ==>

+retrieval> +retrieval>
value NECESSARY value SUFFICIENT

where . . . is a placeholder for a string value that is different
for each production rule (e.g. “She will meet a friend”). After
reading, the model interprets (or contextualizes) the sentence:
Depending on which production rule matches and fires, a con-
text chunk where either value NECESSARY or SUFFICIENT is
retrieved and this retrieved chunk, either NEC or SUF (Figure 2,
right, DECLARATIVE), is placed in the imaginal buffer. Af-
ter that, the respective hypothesis chunk (either with value
DISABLER or ALTERNATIVE) is retrieved and placed into the
imaginal buffer.

Argumentation Task
The argue task can only start after the models have accom-
plished the read task (or at least once for model II).

Arguments as Chunks The chunks of type argument con-
tains the slots fact, hypo and context which contain other
chunks, respectively. Additionally, arguments contain the
slots pos and neg-pos having string values, representing the
position and the opposite position, and the slot str having a
float value, denoting the argument’s strength. Consider two



strong arguments from the example in the previous section:

(arg1 isa argument hypo NONE fact FRIEND

pos "YES" context SUF neg-pos "UNKNOWN" str 1)

(arg2 isa argument hypo DISABLER fact FRIEND

pos "UNKNOWN" context NEC neg-pos "YES" str 1)

arg1 represents the modus ponens argument, stating that She
will meet a friend (fact FRIEND), together with the condi-
tional being understood as sufficient (context SUF), being
an argument for She will go to play (pos "YES"). arg2 rep-
resents the attacking argument including the final position:
stating that, a disabling hypothesis (hypo DISABLER, e.g. She
does not have enough money) and the conditional understood
as necessary (context NEC), forms an argument for the po-
sition She will not go to a play. arg1 and arg2 are equally
strong (str 1). As slot hypo in arg2 has a disabling hypoth-
esis (DISABLER), it defends against arg1, and makes both
arguments acceptable (thus we cannot conclude skeptically
that She will go to the play and therefore the position is pos
"UNKOWN).

Variations in Argumentation Process Humans differ in
reasoning (c.f., (Khemlani & Johnson-Laird, 2016)): Some
draw conclusions already based on one argument that sup-
ports a position, whereas others try to generate hypotheses
to build (strong) counter arguments. The dialectic argumen-
tation processes in model II (Figure 2, right) subsumes the
one in model I and is as follows: In case an argument was
successfully retrieved by search for argument, two pro-
duction rules might apply, either (1) Respond with the posi-
tion of that argument or (2) Search Counter argument. In
the second case, three production rules might apply: (2a)
there is a Retrieval Failure and the model Responds
with the position of the current argument, (2b) there is a
Retrieval Failure and the model Rereads the premises
(which will increase either the activation of NEC or SUF) or
(2c) Retrieval is Successful and both arguments are com-
pared. The arguments can be compared in either one of the
following ways: (2c,i) through their strengths (which argu-
ment is stronger?), (2c,ii) through their activation (which ar-
gument has the higher activation), or (2c,iii) based on their
hypothesis (which argument has a disabling or alternative hy-
pothesis?). Figure 2 only shows (2c,i), where depending on
whether argument 1 or argument 2 is stronger, either one of
the following production rules applies:

(p arg-1-stronger (p arg-2-stronger
=goal> =goal>
state argue state argue

=imaginal> =imaginal>
strength-1 =val strength-1 =val
< strength-2 =val > strength-2 =val
arg-1 =pos arg-2 =pos
==> ==>

=imaginal> =imaginal>
value =pos value =pos

=goal> =goal>
state respond ) state respond )

When the argument taking the disabling or alternative hy-
pothesis into account is chosen (2c,iii) then one of the fol-
lowing production rules applies:

(p arg-1-hypo (p arg-2-hypo
=goal> =goal>
state argue state argue

=imaginal> =imaginal>
- arg-1 nil - arg-1 nil
- arg-2 nil - arg-2 nil
arg-1 =pos arg-2 =pos
- hypo-1 None -hypo-2 None
==> ==>

=imaginal> =imaginal>
value =pos value =pos

=goal> =goal>
state respond ) state respond )

In the current implementation, model II includes all options,
except (2c,ii). Further, the utility to respond with the posi-
tion of the firstly retrieved argument (thus not searching for
a counter argument) is higher than for the other production
rules.

Evaluation
We first show how the models perform with respect to a cog-
nitive reasoning task and then discuss their results.1

Application: Byrne’s Suppression Task
The application of Cognitive Argumentation in ACT-R is
shown by means of a typical reasoning task. In the suppres-
sion task (Byrne, 1989) participants were asked whether they
could derive conclusions given variations of a set of premises.
The task consists of two parts, where in both parts, the condi-
tionals are the same, but the factual information changes.

Part I Group I was given the following two premises: If she
has an essay to finish, then she will study late in the library.
and She has an essay to finish. (essay) The participants were
asked what of the following answer possibilities follows as-
suming that the above premises were true: She will study late
in the library, She will not study late in the library or She may
or may not study late in the library. 96% of the participants
in this group concluded that She will study late in the library
(library). Group II of participants additionally received the
following premise: If she has a textbook to finish, then she
will study late in the library. which yield to the same result:
96% of the participants in this group concluded that She will
study late in the library. Group III of participants instead
additionally received the following premise: If the library is
open then she will study late in the library. In this case, only
38% concluded that She will study late in the library. If in-
stead She does not have an essay to finish was given as a fact,
only 4% of Group II concluded She will not study late in the
library, whereas for Group I and Group III, the percentage
was 46% and 63%, respectively.

1The models can be found here:
https://github.com/eadietz/bst2actr.



Part II The second part of the experiment was similar, ex-
cept that the given facts were different. The participants were
given the fact that She will study late in the library (library)
or She will not study late in the library (not library) and asked
what of the following answer possibilities follows assuming
that the given premises were true: She has an essay to finish,
She does not have an essay to finish or She may or may not
have an essay to finish.

Fact Group Model I Model II Byrne Dieussaert+

I 98 90 96 88
II 98 90 96 93

es
sa

y

III 52 37 38 60

 concluded She will study late in the library

Model I Model II Byrne Dieussaert+

I 47 31 46 49
II 5 10 4 22

no
te

ss
ay

III 73 65 63 49

 concluded She will not study late in the library

Model I Model II Byrne Dieussaert+

I 46 31 71 53
II 4 10 13 16

lib
ra

ry

III 72 64 54 55

 concluded She has an essay to finish

Model I Model II Byrne Dieussaert+

I 95 90 92 69
II 99 89 96 69

no
tl

ib
ra

ry

III 54 37 33 44

 concluded She does not have an essay to finish

Table 1: The percentages of model I and II after 100 simu-
lations compared to the experimental results by Byrne (1989)
and Dieussaert et al. (2000), abbreviated by Byrne and
Dieussaert+, respectively. The first two columns are the cases
and the groups. The highlighted rows show the suppression
effects.

Results The results in Table 1 show that both, model I and
model II account for the suppression effect in all four cases.
The results that diverge most from the experimental data, are
for cases II (essay) and III (not essay) for group I in model II.
Model I fits better the data than model II, however which of
the model’s underlying mechanisms are more plausible?

Discussion
Model I fits better the data than model II, but model II’s im-
plementation of background knowledge, divisions of tasks
and individual differences, might better account for the un-
derlying cognitive process. Through optimization via meta

parameters or the utility modules, an eventual perfect fit of
the models to the data seems feasible, however, maybe less
interesting.

Background knowledge In model I, background knowledge
is stored in the declarative memory (where chunks differ in
their base-level activation), whereas in model II, the knowl-
edge is in the production rules.

Division of Tasks Model I’s tasks of read, argue and re-
spond are strictly ordered. This might be plausible for the
respond task, however the read and argue tasks seem inter-
twined, which makes model II more plausible: participants
might re-read the sentences while they argue for or against
some response.

Argument Selection Chunks that are retrieved last have a
higher activation than other chunks. Yet, for argumen-
tative reasoning the strength or the attacking character
(e.g. through disabling/ alternative hypotheses) might have
stronger effects.

Individual Differences Competing production rules in
model II represent the different individual’s responses.
Another modeling approach could have been the imple-
mentation of a set of models.

Learning Reasoning tasks usually do not consider learning,
even though this is a relevant aspect for which cognitive
architectures are well suited for.

Conclusions
This paper shows how cognitive argumentation can be im-
plemented into a cognitive architecture. In cognitive argu-
mentation, cognitive principles specify task-independent as-
sumptions humans might make while reasoning. A variation
of the original dialectic argumentation process is formalized
in ACT-R. Most importantly, an exhaustive search for argu-
ments is avoided, and instead, the argumentation process is
guided through chunk activation. Two argumentation-based
reasoning models are evaluated to the experimental results of
a famous reasoning task. The approach provides an ACT-R
implementation of two models that solves a (conditional) rea-
soning task through cognitive principles where reasoning is a
guided dialectic argumentation process. Still, a lot needs to
be done to refine this approach. The current implementation
takes the existence of arguments as granted and does not pro-
vide a mechanism of argument construction. Furthermore,
we need to consider other reasoning tasks such as tasks that
investigate learning. With the help of new experiments, we
could evaluate and refine the dialectic argumentation process
as currently implemented. Finally, the automation of the con-
ditions’ classification and the problem of prior knowledge is
still an open problem. Natural language processing and argu-
ment mining (Lawrence & Reed, 2020) might be helpful for
this purpose.
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