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Abstract
Motivation is the driving force that influences people’s
behaviors and interacts with many cognitive functions.
Computationally, motivation is represented as a cost-benefit
analysis that weighs efforts and rewards in order to choose the
optimal actions. Shenhav and colleagues (2013) proposed an
elegant theory, the Expected Value of Control, which
describes the relationship between cognitive efforts, costs,
and rewards. In this paper, we propose a more fine-grained
and detailed motivation framework that incorporates the
principles of EVC into the ACT-R cognitive architecture.
Specifically, motivation is represented as a specific slot in
Goal buffer with a corresponding scalar value, M, that is
translated into the reward value Rt that is delivered when the
goal is reached. This implementation is tested in two models.
The first model is a high-level model that reproduces the EVC
predictions with abstract actions. The second model is an
augmented version of an existing ACT-R model of the Simon
task, in which the motivation mechanism is shown to permit
optimal effort allocation and reproduce known phenomena.
Finally, the broader implications of our mechanism are
discussed.
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Introduction
Observable behavior in cognitive tasks is affected by the

degree to which a participant puts effort into the task. The
driving force behind this effort allocation is usually called
motivation and represents a significant obstacle in properly
inferring individual characteristics from observations. For
example, a participant performing poorly in an N-back task
might be poorly motivated to perform the task, rather than
having limited working memory capacity. Despite its
importance, motivation is rarely modeled or accounted for
in cognitive models. In this paper, we outline a theory of
motivation implemented in the ACT-R cognitive
architecture and demonstrate its application.

To understand motivation from a cognitive modeling
perspective, it is necessary to clarify the definition and
relationships between several important constructs.
Motivation is not directly observable. It is usually described
as a driving force or invigorating impact on behavior or
cognition that initiates a goal-oriented behavior. That is to
say, we can only infer one's motivation from his behavior
and cognition. Effort refers to how many cognitive resources
one would allocate to a particular activity in order to
achieve the goal. According to Inzlicht, Shenhav, and
Olivola (2018), Motivation specifies both direction and
intensity of goal-oriented behavior, while effort only
indicates the intensity of any possible action, without
reference to any goal. Demand is different from Effort in
that it is the descriptive property of the task or environment,

while Effort indicates the magnitude of the force that an
individual might apply toward the environment. Other
cognitive states such as mental fatigue, curiosity, and high
arousal may interact with motivation in certain ways to have
crucial impacts on learning, memory, and other cognitive
control functions therefore, cognitive modeling gives us a
unique opportunity to parse apart the specific effect of
motivation alone.

Expected Value of Control Theory
Although several attempts have been made to capture

motivation within a computational framework (e.g., Niv,
2007), the current dominant theory is the Expectancy Value
Theory. It was first proposed by Voom in the 1960s and
recently expanded into a formal theory known as the
Expected Value of Control (EVC) model by Shehav et al.
(2017). The EVC model assumes that individuals would
evaluate cost-benefit tradeoffs in order to maximize gains
and minimize costs in deciding how much cognitive effort
one would allocate to the chosen action, as shown in Fig
1(A, B).

According to the EVC model, the expected value of
control is determined by the expected reward and efficacy of
the task. The expected reward indicates the expected
outcomes of achieving the goal (e.g., monetary incentives)
and efficacy refers to how likely the goal will be achieved
by allocating a certain amount of control and expending a
certain amount of effort (time). Computationally, the EVC
model specifies that cognitive effort is allocated based on
two dimensions: 1) identify the object (what to attend); 2)
intensity (how much effort to allocate, compared to default
level). A key assumption of this model is that intrinsic cost
would be associated with higher control intensity. At the
neural level, the translation between the expected value (i.e.,
the difference between expected rewards and costs) and
corresponding effort allocation is mediated by the dorsal
anterior cingulate cortex (dACC), a region that is known to
play a critical role in linking adjustments in performance
(Botvinik et al., 1999) with task feedback (Holroyd et al.,
2004), error learning (Yeung et al., 2004) and with expected
rewards (Adcock et al.  2006).

Thus defined, the EVC is an elegant, comprehensive, but
highly abstract framework: it does not provide a direct
mechanism by which costs and rewards are computed and
associated to specific cognitive steps, nor it does make
specific predictions about how motivation would precisely
shift how an individual performs a task. To do so, we need a
more fine-grained and detailed theory of human cognition.



One such prominent theory is the ACT-R cognitive
architecture (Anderson 2007).

ACT-R
ACT-R is the most prominent and successful cognitive

architecture in psychology and neuroscience (Kotseruba and
Tsostsos, 2020). Surprisingly, despite the high relevance of
motivation to other cognitive functions and the apparent
potential and an ACT-R model of motivation, the interaction
between motivation and cognitive control has been largely
overlooked in ACT-R literature. Several modeling attempts
have been made in order to incorporate motivation-related
constructs into ACT-R, such as intrinsic motivation
(Nagashima et al., 2020), emotion (Smith et al., 2021),
mental fatigue (Herlambang et al., 2021; Halverson et al.,
2021), and depression (van Vugt and van der Velde, 2018).

In ACT-R, knowledge is represented in two fundamental
formats: chunks and production rules. A Chunk is a
vector-like structure that stores semantic or episodic
memories. A Production rule (or simply production) is a
basic action unit that represents procedural knowledge as an
“IF-THEN” conditional statement. Productions and chunks
interact through a set of modules which represent different
cognitive processes. For example, a Visual module encodes
visual information as chunks, and a Motor module
transforms chunks into motor outputs. Most critical to this
paper are the Goal module (holding current goal
information), the Declarative module (storing all declarative
memories and managing their availability for retrieval), and
the Procedural module (maintaining, updating, and
selecting productions).

Each chunk is associated with a scalar value, called
activation, which represents the odds of a chunk being
needed in the future (Anderson, 1998). Similarly, each
production has a utility value which represents the expected
future rewards associated with the execution of that
production. In ACT-R, only one chunk can be retrieved and
only one production can be fired at any time; thus,
computing chunks are selected on the basis of their
activations, and production rules are selected on the basis of
their utility. Utilities are learned through experience. At any
time point t, the utility U of production p is calculated based
on Reinforcement Learning using Eq 1, where 𝛼 denotes the
learning rate, Rt denotes the reward the production received
at time 𝑡; s denotes the noise parameter.
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In ACT-R, rewards and costs are represented in time
units. For instance, if the model fires a production P1 at t1
and it receives a reward Rdelivered at t2. The utility learning
discounted the reward by the time it passed: The received
amount of reward is: Rreceived = Rdelivered - (t2 - t1).

It should be noted that, in ACT-R, the above-mentioned
Goal module is putatively associated with dACC
(Anderson, 2007), but has no relationship to rewards and is,
in fact, used only as a way to add additional information to

select between competing productions. This violates
established findings in neuroscience and is incompatible
with the EVC. It is also a major departure from early
versions of the ACT-R architecture (e.g., Anderson &
Lebiere, 1998), in which goals were associated with specific
values, and values were explicitly used to rank productions
on the basis of a cost-benefit analysis. This older framework
was, in principle, much more compatible with the EVC
theory. One of our objectives is to propose a framework that
conserves the current RL-based utility mechanisms but
connects it with explicit goal values, re-introducing some of
the most desirable features of the previous implementations.

Present study
The goal of this paper is to outline a general framework of

goal-oriented motivation in ACT-R that is consistent with
the EVC theory and can be implemented and deployed in
any ACT-R model. This framework assumes that the goal
module assigns value to chunks representing goals, with this
value representing the subjective reward associated with
accomplishing the goal. This is implemented by adding to
the current Goal chunk a special motivation slot that
contains a numeric value M. Once the goal is achieved, M is
interpreted as the amount of reward delivered in the end. At
that moment, M is automatically translated into the Rt value
that is used in Eq 1., and propagates back to previous
productions. Because in ACT-R, rewards are represented in
time units, the value M can be interpreted in two ways: as
the subjective value associated with reaching a goal, and as
the maximum amount of time the model is willing to spend
on a particular goal. The first interpretation is consistent
with the current interpretation of the reward value Rt, while
the second is consistent with the original interpretation of
the goal value G in previous versions of ACT-R. By
incorporating this mechanism, the Goal buffer is not only a
passive recorder of task status, but an active power behind
adaptive behaviors. Crucially, our model also attempts to
account for where the intrinsic reward Rt comes from, and
how motivation value M alters one’s behavior by affecting
the calculation of expected reward and effort.

We compare our motivation model to another well-known
model of effort allocation and motivation proposed by
Shenhav et al. (2013). We argue that ACT-R’s procedural
system provides an equivalent way of calculating the
expected value of control as proposed in the EVC model. To
prove that, we develop a simple effort allocation model in
ACT-R, showing that ACT-R is capable of selecting the
optimal strategy by weighing costs and rewards when
making a decision, in line with EVC Theory. Further, we
extend this simple model to a more complicated and realistic
computational model of a cognitive interference task (the
Simon task), augmenting it with the new motivation
component. The result demonstrates that the proposed
framework is compatible with the EVC model, and it helps
us understand why cognitive systems vary widely in
making decisions for engaging in effortful activities.
Moreover, we propose a modeling approach for future



ACT-R modelers that incorporates costs, rewards, and
motivational components into cognitive function. All of the
model and simulation codes and data are freely available at
https://github.com/UWCCDL/ACTR-Motivation

Computational Models

Motivation and Effort Allocation in an Abstract
Model

To demonstrate the relationship between EVC theory and
the proposed ACT-R motivational framework, we first
present a simple, abstract ACT-R model and simulate the
expected value of control predicted by the EVC model. To
translate the continuous effort allocated in the EVC model,
the abstract model assumes that different amounts of effort
correspond to ten possible productions, indicated as P1, P2
… P10. The pre-conditions of these 10 productions are the
same to guarantee that they are competing with each other.
When the model starts running, only one of these 10
productions is selected based on the highest utility.
Following this, an END production delivers a certain
amount of reward at the end.

The 10 productions represent ways to perform the task
that is associated with different rewards and costs in terms
of mental effort. The reward is represented in terms of the
probability of achieving the goal. The cost of production is
represented by the time it takes to execute, which is
controlled by a production-specific :AT parameter (for
“Action time”) in ACT-R. This parameter represents the
effort associated with each production and, in the EVC
framework, the associated cost of cognitive control. By
default, it takes 0.05 seconds to fire a production, in this
simple model, we assign different :AT to 10 productions in
ascending order (0.01-0.1). Larger :AT suggests that the
model needs to allocate more resources (time) in order to
achieve the goal, while smaller :AT suggests that it could
quickly finish the task, without spending more time on it.
Specifically, production P1 is assigned to the smallest :AT,
and P10 is assigned to the largest :AT.

To model expected payoffs, we set various amounts of
rewards for 10 productions, in ascending order (0 - 10). P1
is assigned to the lowest reward, while P10 is assigned to
the highest reward. Following Musslick, S., Shenhav, A.,
Botvinick, M. M., & Cohen (2015)’s suggestion, we varied
the costs of the different productions according to an
exponential function and varied each production’s
probability of receiving a reward as a sigmoid function.
Thus, assigned cost increases from P1 to P10 exponentially,
and the delivered rewards increase from P1 to P10 following
the sigmoid function. Simply put, P1 spends the least
cognitive resources but also has the lowest payoff, while
P10 spends the most cognitive resources but has the highest
payoff.

Two experimental conditions were simulated,
corresponding to the two theoretical cases discussed by
Shehav et al (2006). The first is the effect of increased task
difficulty. This was simulated by decreasing each

production’s probability of obtaining the reward. The
second was increasing the payoff. This was done by
increasing the absolute value of M and, therefore, of the
reward associated with accomplishing the task. In our
framework, this is equivalent to simulating higher intrinsic
motivation. We simulated 100 times per parameter set and
100 seconds (in ACT-R time) for each trial. During each
trial, we recorded the counts of each production being
selected to estimate the probability of selecting production.
For each selected production, the received reward was also
recorded to estimate the payoff.

It was expected that the probability of production being
selected would show the same pattern predicted by the EVC
model. Specifically, we hypothesized that, under different
combinations of rewards and costs, the model would assign
the greatest utility (and, therefore, the greatest probability of
being selected) to the production that maximizes the
difference between rewards and costs. both low-cost
low-payoff productions (P1, P2), and high-cost high-payoff
productions(P9, P10) are less likely to be selected than
optimal cost-reward balanced productions (P6, P7, P8).

Results
Fig 1(C) and (D) demonstrate the relationship between

cost, reward, and expected value of control in the abstract
ACT-R model. As expected, our simple mental effort
allocation model generated identical patterns of cognitive
control allocation as the EVC model does. It selected the
optimal production by weighing costs and rewards through
utility learning in Reinforcement Learning. At a medium
level of difficulty and a medium level of payoff (Fig 1C ),
ACT-R selects the P7 production most frequently because
the utility of P7 is the highest after subtracting costs from
payoffs. As the task difficulty increases, ACT-R moves to
selecting production P9 most frequently. In terms of the
EVC model, ACT-R now allocates more resources (a more
costly production) to obtain rewards. If, on the other hand,
the task difficulty decreases, ACT-R switches to a less
effortful production rule (P6), which guarantees similar
rewards but with less costs (shorter times).

We observe similar patterns when the Payoff is
manipulated (Fig 1D). In lower payoff, ACT-R chooses P4
most frequently. As payoff increases, ACT-R tends to
allocate more resources to gain more rewards by selecting
higher-cost higher-reward production P5.

https://github.com/UWCCDL/ACTR-Motivation


Fig 1. The recreated plot of the EVC Model (A, B); the probability
of production in the simple ACT-R model (C, D). In A) and B),
x-axis represents control intensity, red curves describe the costs
increase exponentially as control intensity, and green curves
describe the payoffs curve. The purple curve describes the
expected value of control. In C) and D), x-axis represents 10
productions assigned with increasing costs and increasing rewards;
Green dots denote the reward each production received; Red dots
denote the cost (:AT) of each production; Purple dots denote the
probability of each production being selected given the reward and
cost parameter. Line types denote two conditions: increase the
difficulty (A, C) and increase payoff (B, D). In (A) and (C), dashed
curves describe the lowest task difficulty, while solid curves
describe the highest task difficulty. In (B) and (D), dashed curves
describe the lowest payoff (received rewards), and the solid curves
describe the highest payoff (received reward).

Motivation and Effort Allocation in a Realistic Task
With the simple ACT-R model of effort allocation, it is

safe to say that ACT-R provides a mechanistic
implementation of the EVC framework. This case, however,
was highly stylized: the ten productions do not represent
specific cognitive operations and their costs do not
realistically reflect cognitive times; this level of detail is, by
contrast, the very strength of ACT-R. To examine whether
the motivation framework outlined above could be
translated into a realistic ACT-R model of a cognitive task
of effort we applied it to Stocco et al.’s (2017) model of the
Simon task. The model was chosen because it is freely
available (at github.com/UWCCDL/PSS_Simon) and is the
same task used by Boksem et al (2006) to study motivation.
The Simon task requires participants to respond to visual
stimuli by pressing a leftward button to one shape (e.g., a
circle) and a right button to another (e.g., a square).
Congruent trials are where the stimulus is displayed on the
same side as the rule dictates, while incongruent trials are on
the opposite side. This paradigm was widely used in
neuropsychological studies to assess the ability to inhibit
cognitive interference that occurs when the processing of a
particular visual property hinders the simultaneous
processing of a second stimulus property.

Fig 2. provides a complete overview of the model. It is
composed of 4 main steps: 1) Encoding visual stimulus 2)
Retrieving a Simon rule 3) Responding and 4) Monitoring

performance. The model starts by encoding a cue stimulus,
and then it selects which dimension of the Simon stimulus
to attend to, color or shape. Followed by stimulus
processing, it retrieves the corresponding rule. The attended
dimension provides spreading activation that facilitates the
retrieval of the associated rule (a feature common to other
response interference models in ACT-R: Lovett 2001; van
Rijn 2009). The equation below describes the activation of
chunks calculated with a base-level learning function (Bi),
which reflects the recency of previous retrievals, as well as a
spreading activation component that reflects the degree to
which a chunk matches the contextual components, i.e., the
values of every slot j in every buffer k (Eq 2).

(2)𝐴
𝑖 

=  𝐵
𝑖
 +

𝑘
∑

𝑗
∑ 𝑊

𝑘𝑗
𝑆

𝑗𝑖
+  ε

Fig 2. The flowchart of the motivation model in ACT-R

Before a response is made, a “check” production executes
a final verification step and, if it finds that the response is
incorrect, attempts to re-allocate attention and retrieve
another answer. The model contains additional assumptions
(about the nature of competing processes in attention) that
are not relevant to the goals of this paper, and will not be
discussed. What is relevant, instead, is the nature of the
“check” process. In the original paper, it was constrained to
occur only once. In our extended simulation, we removed
this limitation and allowed the model to check as many
times as possible. Because the number of checks performed
corresponds to how much effort is used to control attention,
it provides a natural way to model the cognitive control
effort in the task.



In addition, we incorporated a motivation value M in the
Goal chunk and added a self-monitor production that
assesses whether the response was correct and, if so, triggers
a reward of magnitude M. Like the reward and cost
parameter in ACT-R, M is also in time units, representing
how many seconds the model is willing to continue working
on the task. Note that the model will continue checking only
if it finds the current response incorrect. Thus, if M is set
high, the model would have more opportunities to correct
its response. On the contrary, if M is small, it would have
less opportunities to refocus attention.

To increase the task difficulty, Boksem et al., (2006)’s
paradigm added cues stimulus, where 80% of the cues were
valid. They identified an interesting post-error slowing
effect in which participants tended to respond more
carefully and slowly after they thought they made a mistake.
This process is believed to reflect adjustments in the
allocation of mental effort, which is key to the EVC and our
motivation framework. Critically, we verified that post-error
slowing is not produced by Stocco’s original model; thus,
any success in reproducing this effect must be due to our
additional changes.

It was predicted that this model would be able to change
strategies based on the probability of gaining rewards and
costs. If it never checks, the likelihood of gaining rewards
will become low because of many errors. If the model
checks a lot, the expected payoff will also decline because
of the increasing costs. Therefore, the model should weigh
costs and rewards to decide the attempts of checking
optimally.

We varied Motivation parameter M, the task difficulty
parameter VC (which represents the percentage of cues that
are valid cues) as well as the initial cognitive control costs
through the action time (AT) parameter in ACT-R, which
determines the time (and, thus the effort) needed to execute
each production The parameter space is shown in the table
below.

Parameter Value Meaning
M 0.5 - 10 Motivation
VC 0 - 1 Task difficulty
AT 0.01 - 0.1 Cost of control at T0

Results
To test the validity of our model, we first compared

simulated data to Boksem et al.'s (2006)’s empirical data. To
focus on Simon effects, we fixed the difficulty parameter
VC = 0.5, cost parameter AT = 0.05, and limited motivation
parameter to a medium-range (0.1 - 2). Fig. 3 confirmed that
our model still reproduced the main Simon effects.
Incongruent trials were associated with lower accuracy, and
longer response time than congruent trials, same for invalid
trials.

Fig 3. Model simulation results of Simon effect vs. empirical
findings of Simon effects (Boksem et al., 2006). Solid lines denote
effects of empirical data and dashed lines denote effects simulated
by our model.

In addition, our model could reproduce the post-error
slow effect observed in empirical data (Fig 4). Note that this
effect could not be reproduced by the original model
(Stocco et al., 2017) under any combination of parameters;
thus, it is a unique feature of the added motivation
mechanism. Specifically, post-error slowing is a
consequence of the model adjusting control after a mistake
is made.

Fig 4. The post-error slowing effects in both empirical data and
ACT-R model simulation data (across all parameter combinations).
The standard error for both empirical data and model data is shown
in the plot.

In the Simon model, the degree of cognitive control is
determined by how often the CHECK production is
employed before a response is made. Additional firings of
the CHECK productions result in repeated allocations of
attention and, thus, more time spent before making a
response. As hypothesized, we found that a model with a
lower M (M < 2.5) would check only once or never check,
while a model with a high M (M > 7.5) tends to check more.
For example, when M < 2.5, the model performs an average
of 0.54 checks, when M < 7.5, the model performs 0.81
checks, and when M >= 7.5, it performs on average 1.01
checks.

As predicted by the EVC theory, the relationship between
motivation, number of checks, and utility of the CHECK
production are complex and nonlinear. To examine this
relationship, we fixed the parameter ValidCue% to 0.5. Fig.



5 represents the resulting relationship between the costs,
rewards, and allocated control. In the figure, the x-axis
represents the intensity of control as the number of firings
for the Check production, and the y-axis represents rewards,
costs, and utilities in time units. The cost curve (red line) is
represented by the total response time the model takes as a
function of the count of checking. Moreover, in our
self-monitoring process, once the model verifies that the
response was correct, a reward equal to M is delivered. The
utility of the CHECK production (purple line) represents
the expected value of control in the EVC model. In line with
the EVC model, our ACT-R model predicts that the model
will be encouraged to invest more effort if expecting a
higher payoff, but as costs increase, the expected reward
decreases and the model decides to stop investing more
effort by reserving effort. Note that, although the model
could achieve greater performance through greater control,
it naturally sets to an estimated value of one check per trial
because, at this level, the payoff is maximal: additional
checks have many diminishing returns. Incidentally, this is
precisely the number of checks that were determined to
yield optimal results in Stocco et al (2017) and Lovett
(2005).

Fig 5. Expected value of control in the Simon Task model. Control
intensity is expressed as the number of firings of the CHECK
production. Note that, even when higher rewards would be
possible at a higher level of control, the model naturally shifts to
the amount of control that maximizes the difference between
rewards and costs.

Discussion
In this paper, we have proposed a mechanistic

interpretation of motivation within the ACT-R cognitive
architecture. Specifically, we propose that motivation can be
modeled by assigning a value M to the current model’s goal
and translating this value as the reward Rt that is triggered
when the goal is accomplished. With this mechanism in
place, ACT-R’s utility learning mechanism then provides a
way to adjust the specific combination of productions that
are used to perform a task. Because in ACT-R, rewards and
time spent on a task are expressed on the same scale (and
rewards are adjusted by the time elapsed), the motivation
parameter M can be equivalently expressed as the subjective
reward associated with accomplishing the goal and the
maximum amount of time that the model is willing to spend
on the task. We first demonstrated, using a simple abstract

model, that this mechanism is equivalent to the EVC theory.
We then showed how this mechanism can be easily
implemented in an existing model of a common laboratory
task (the Simon task) and used to account for experimental
effects that would otherwise go unmodeled, such as
post-error slowing, the effect of difficulty, and even fatigue.
All of these effects can be understood as ways in which the
model flexibly copes with changes in task demands.

A number of limitations must be acknowledged. First, the
level control intensity is quantified by the counts of
checking attempts, as a discrete variable. Future work will
be needed to address these issues and expanding our model
to represent the control intensity with a continuous variable
could be the next step of research. Moreover, individual
variability in motivation could be examined in future
modeling work, specifically how motivation affects the
response time rather than accuracy for individuals putting
different priorities in speed vs. accuracy tradeoffs (Boksem
et al., 2006).

These limitations notwithstanding, we believe that our
results are noteworthy for three reasons. In addition to
providing a way to implement motivation into ACT-R, our
framework provides a more complete view of the role of the
Goal module in ACT-R. Currently, the model’s capabilities
make it distinguishable from the Imaging module. By
connecting it to the amount of reward that is generated, this
framework provides an interpretation that is more in line
with neuroscientific data. It also provides a connection to
the original interpretation of the goal in previous versions of
ACT-R, as well as the original production selection
mechanisms. Finally, it provides a way to better fit models
at the individual levels, decoupling the effects of individual
capacity and motivation.
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