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Abstract
In previous work, we provided a neurally-based Actor-Critic
network with biologically inspired grid cells for representing
spatial information, and examined whether it improved perfor-
mance on a 2D grid-world task over other representation meth-
ods. We did a manual search of the parameter space and found
that grid cells outperformed other representations. The present
work expands on this work by performing a more extensive
search of the parameter space in order to identify optimal pa-
rameter sets for each configuration using one of four represen-
tation methods (baseline look-up table, one-hot, random SSPs
and grid cells). Following this optimization, the baseline, one-
hot and random SSPs methods did show improvement over the
previous study, in some cases showing performance as good
as grid cells. These findings, combined, suggest that whilst
the baseline and one-hot methods do perform well once op-
timized, grid cells do not necessarily require optimization in
order to produce optimal performance.
Keywords: Reinforcement Learning; grid cells; Spatial Se-
mantic Pointers;

Introduction
Humans and non-human animals are able to learn how to in-
teract with their environment in order to maximise rewards
through a process of trial and error (Mackintosh, 2019). This
ability has inspired the development of Reinforcement Learn-
ing (RL) methods for training artificial systems. The goal of
RL methods is to learn a policy of how to move through an
environment or perform a task in order to maximise reward
(Sutton & Barto, 2018). In the case of neurally-based RL al-
gorithms, this often involves implementing either a policy- or
value-based algorithm. With value-based approaches, a net-
work is provided with the current state st as input and then
calculates the value of that state V (st) with the longer-term
goal of maximising the value function V (s). Policy-based
approaches often involve again providing the network with
the current state and having the network produce a distribu-
tion indicating the likelihood of performing different actions
(a) in that state ([p(st ,a1), p(st ,a2), ...p(st ,an)]). Regardless
of the approach taken, this is generally a more difficult task
than traditional neural-network learning because the network
needs to both learn about the task, and learn the right way to
represent the input data in order to produce the correct output.

In contrast, biological systems will, in most cases, already
have a representation that can be re-purposed for a novel task.

Figure 1: Screenshot of the 8×8 Mini-Grid environment.

For example, in the case of spatial navigation, much evidence
points to grid cells as being involved in the encoding of spatial
locations. Grid cells are neurons that encode a representation
of space which takes the form of a repetitive hexagonal grid
pattern (Hafting et al., 2005). This distinction is often pointed
to as an explanation for why biological systems seem to learn
RL tasks faster than artificial systems.

Taking inspiration from biological systems in the context
of spatial navigation RL tasks has proved advantageous. A
study by Gustafson & Daw (2011) involved training a net-
work to solve a series of navigation tasks using a TD-based
network where the state representation was in the form of a
look-up table, place cells or grid cells. As a secondary find-
ing, Gustafson & Daw (2011) observed that, in most tasks,
the use of grid and place cell basis functions led to faster
learning than when the state was represented using a tabu-
lar basis function. A study by Banino et al. (2018) involved
generating grid cell representations of spatial information by
training a recurrent neural network to perform path integra-
tion. This grid cell network was then use in conjunction with
an Actor-Critic (AC) network and trained using deep RL to
solve navigation tasks. This study found that performance
when using this grid cell network was better than that of an
agent that used place cell representations of the state.

The Neural Engineering Framework (NEF) offers addi-
tional, alternative biologically-plausible methods for repre-
senting space (Eliasmith & Anderson, 2003). Not only does



the NEF provide tools for implementing models based on
spiking neurons, but more recently spatial representations
(Komer et al., 2019) and grid cells (Dumont & Eliasmith,
2020) can be seen as special cases of a general vector-based
representation called Spatial Semantic Pointers (SSPs)

The current study is an extension of Bartlett et al. (in press)
in which different methods for representing the state were
compared in a spatial navigation RL task, including random
SSPs and grid cells. In the previous work, a total of 4 repre-
sentation methods (baseline, one hot, random SSPs and grid
cells) were compared by training TD-based AC networks (us-
ing either the TD(0) or TD(λ) learning rules) to solve a simple
spatial navigation RL task. To avoid questions of the biolog-
ical plausibility of learning rules such as back-propagation,
we only applied the learning rule to a single layer of neu-
ral connection weights. This means that the network must
make use of the style of representation that is available to it,
rather than learning a custom style of representation for the
particular task. The previous exploration found that the use
of biologically-inspired grid cells for representing the state
resulted in the network learning to solve the task in fewer
learning trials. The present work expands on this by per-
forming a more thorough search of the parameter space for
each configuration, in order to find optimal parameter sets.
We then compare the optimized configurations to determine
whether the use of grid cells does in fact lead to improved
performance, or whether this finding was an artifact of the
manually selected parameter values used in the initial study.

Methods
Learning Task
For these experiments, we compared the performance of each
network configuration on the Gym MiniGrid navigation task
(Chevalier-Boisvert et al., 2018). Specifically, we used the
8× 8 MiniGrid environment where the agent’s task on each
trial is to navigate to a goal location. This environment con-
sists of 6× 6 (36) possible locations. At each timestep, the
agent is able to take 1 of 3 possible actions (move forward,
turn left, turn right). At the beginning of each learning trial,
the agent was initialised in the top left-hand corner (Figure 1,
red triangle) and was tasked with reaching the bottom right-
hand corner (Figure 1, green square).

Actor-Critic Network
The AC Network was implemented in Python using the NEF
(Eliasmith & Anderson, 2003) (see Figure 2 for the network
schematic). Input to the network is the agent’s current state,
and the most recent action and reward. The state is a 3-
dimensional vector containing the agent’s location in the grid
world (in the form of (x,y) coordinates) and the direction it’s
facing (0 = pointing right, 1 = down, 2 = left, 3 = up). This
state information is transformed into the chosen representa-
tion (one hot, random SSPs, or grid cells) in the representa-
tion node. The representation is then passed to a hidden layer
consisting of rate neurons utilizing a rectified linear function.

Figure 2: Schematic of Actor-Critic Network.

The neuron activities along with the action and reward are
then used in a rule node where the TD update is performed.
The TD update trains the network’s weights to approximate
the optimal policy for completing the task with maximum re-
ward. The output from the network is the updated state value,
and a vector containing the preferences for each action, which
is used to decide which action to take in the next timestep.

Representations
One Hot: The one-hot method represents states by storing
an array containing one value for each possible state. States
are represented by setting all of the values in the array to 0
except for one which is set to 1. The position of this 1 value
in the array corresponds with the state being represented.
When implemented without the use of neurons, this method
of representation is equivalent to a look-up table. As such,
this method was used in two of the representation conditions:
one hot and baseline. In the baseline condition, the one-hot
method was implemented and the network did not contain
any neurons. In the one-hot condition, however, the one-hot
representation was passed to the hidden neuron layer before
being used in the TD update. The baseline condition was the
only condition that did not utilize the hidden neuron layer.

Spatial Semantic Pointers: Two different styles of neu-
rally plausible vector-based representations were imple-
mented. The first of these is randomly chosen SSPs (Komer
et al., 2019). The SSP method extends the idea of vector
symbolic architectures (VSAs) (Gayler, 2004) to continuous
spaces. Say we want to represent an ordered list, e.g. [A, B,
C]. With VSAs, we can do this by binding the list items (A, B
and C) to d-dimensional vectors for each position in the list
(e.g. POS1, POS2, POS3). Thus the list is represented as:

A⊛POS1 +B⊛POS2 +C⊛POS3,

where ⊛ is the binding operator. Rather than generating
unique random vectors for each position in the list, we can
generate them in a more principled way. If we create a vector
for the first position (POS), then we can generate a vector for
the second position by binding the POS vector to itself. Thus



for each integer index n of a structure, the positional vector
can be generated by binding the first positional vector to itself
n times (POSn):

A⊛POS+B⊛POS2 +C⊛POS3.

Generalizing this method to representing continuous vari-
ables involves the use of fractional binding – rather than
raising the position vector POS only to integer values (e.g.
POS2), it is possible to raise it to some fractional power (e.g.
POS1.5). The mathematical meaning of this operation is de-
pendent on the particular choice of the ⊛ operator in the VSA.
One common choice is circular convolution. Since circu-
lar convolution can be implemented as multiplication in the
Fourier domain, the corresponding fractional number of bind-
ing operations can be expressed as:

POSn = F −1{F {POS}n}, n ∈ R.

Thus performing this fractional binding involves performing
the Fourier transform F , raising each Fourier coefficient to
the fractional power n, and then doing the inverse Fourier
transform F −1. The result is our SSP.

In our VSA system, F {POS} is a unit-length complex
number, so raising it to the exponent n simply multiplies
its phase by n. In this way, an SSP encodes the value n
in the phases of its Fourier coefficients. This phase encod-
ing is similar in nature to how we represent time on an ana-
log clock. The hour-, minute-, and second-hands of a clock
change phase (rotate) as time progresses. Hence, we can tell
what time it is by looking at the phase of the 3 hands on the
clock. Importantly, the 3 hands oscillate at very different fre-
quencies, allowing us to determine the time to the precision
of 1 second, but over a 12-hour period.

Now that we can represent continuous variables, we can
encode multi-dimensional state information into such vectors.
For example, in the MiniGrid task, the state at any given time
is made up of the agent’s (x,y) coordinate location on the
grid, and the direction in which it’s facing (z). Encoding this
as a single SSP, S, can be done using:

S = F −1 (F (X)xF (Y )yF (Z)z)

where, for each value in the state, we choose a high-
dimensional unitary vector (X , Y , or Z). We then com-
pute its Fourier transform, F (X), raise that to an expo-
nent, F (X)x, and multiply it by the other transformed val-
ues, (F (X)x ×F (Y )y ×F (Z)z). Finally, we take the inverse
Fourier transform in order to get our final SSP for that state.

This method of encoding the state was used for the ran-
dom SSP condition, with the additional note that the encod-
ing weights (Wencoders, Figure 2) were randomly generated,
resulting in neurons that were random pattern cells (see Fig-
ure 3A).

Grid Cells: In contrast with the random SSP method, by
carefully selecting X , Y , Z, and Wencoders as per Dumont &
Eliasmith (2020), it is possible to generate grid cells. While

Figure 3: Receptive fields of neurons with random encoders
(A) and of grid cells (B) used to represent SSPs.

Table 1: Table showing which parameters were tested, the
ranges of values tested, and which network configurations in-
volved these parameters.

Parameter Values Tested Configurations

Alpha range 0 - 1 All
Beta range 0 - 1 All
Gamma range 0 - 1 All
Lambda range 0 - 1 All with TD(λ)
Neurons range 100 - 5000 All with neurons
Sparsity range 0 - 1 All with neurons
Dimensions 64, 128, 256, 532 SSP rep

the mathematical details of this derivation are outside the
scope of this paper, the general principle is to choose vec-
tors such that the waves produced by the Fourier transform
cause triplets of wave functions to interfere with each other
to produce grid patterns (see Figure 3B). Furthermore, grids
of different sizes and orientations (as observed in the hip-
pocampus) are all produced out of the same vector, using the
same maths as in the previous section, purely by selecting our
base vectors and encoding connection weights. It should also
be noted that, while the construction of these vectors does
involve complex numbers, the resulting neural network is a
standard feed-forward single-hidden-layer network with real-
valued weights.

NNI Experiments

To perform hyper-parameter tuning, we used the Neural Net-
work Intelligence (NNI) toolkit (Microsoft, 2021). In total,
8 NNI experiments were performed. The parameters being
searched differed between network configurations. A list of
all parameters (along with the range of possible values) that
were searched is presented in Table 1. The NNI experiments
used an annealing algorithm for tuning, which starts by se-
lecting random values for the parameters, but over time se-
lects values that are closer to the best ones observed. The
optimization goal was to identify the set of parameters that
minimized the number of runs needed to reach a goal rolling-
mean reward of 0.95 over the last 100 learning trials. Each
NNI experiment was run for 12 hours.
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Figure 4: Scatter plots showing the optimization curves of the NNI experiments.
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Figure 5: Scatter plots showing the number of trials to reach the goal rolling-mean reward for experiments using the best
performing parameter combinations.

Results
NNI Results

The first step for analysis was to calculate the number of trials
needed to reach the goal rolling mean of 0.95. For the pur-
poses of analysis, if an experiment failed to reach the goal, its
reported number of trials to reach goal was manually set to
2,000 (the max number of learning trials). This ensured that
these experiments could be included in the analysis.

In Figure 4 we present the optimization curves for all 8
NNI experiments. These plots provide a general idea of how
successful NNI was in finding good parameter sets for each
configuration. For the configurations using the TD(0) learn-
ing rule, it appears that the NNI experiment was able to iden-
tify good parameter sets (values which resulted in reaching
the goal in 200 learning trials or less) fairly quickly. Whilst
a similar pattern is evident for three of the configurations us-

ing the TD(λ) learning rules, the configuration using random
SSPs to represent the state continued to fail to reach the goal
throughout the experiment. In the initial study (Bartlett et al.,
in press), the mean number of trials needed to reach the goal
was generally greater for this configuration compared to the
others. The current findings suggest that this higher mean
may have been the result of a higher number of failed runs –
the previous study used the same approach of including failed
runs in the analysis by setting the number of trials needed to
reach the goal to the maximum number of trials (10,000).

The next step was to look more closely at the ‘best’ per-
forming parameter sets. We identified the top 2% of experi-
ments that achieved the goal in the fewest learning trials for
each configuration. Table 2 presents the minimum and maxi-
mum number of trials needed to reach the goal for the top 2%
of experiments using each configuration. Whilst the number
of trials needed to reach the goal are (mostly) smaller here



Table 2: Table showing the number of experiments in the top 2% and the minimum and maximum (min, max) number of trials
needed for experiments in the top 2% to reach the goal rolling-mean reward.

TD(0) Baseline TD(0) One Hot TD(0) Random SSP TD(0) Grid Cells

N Experiments in top 2% 27 22 31 17
N Trials (min, max) 149, 150 127, 136 108, 116 105, 108

TD(λ) Baseline TD(λ) One Hot TD(λ) Random SSP TD(λ) Grid Cells

N Experiments in top 2% 30 21 6 19
N Trials (min, max) 134 99, 100 102, 109 99, 103

than the averages found in (Bartlett et al., in press), it is worth
noting that the use of grid cells and random SSPs still result
in faster learning than the baseline condition (and the one-hot
condition where TD(0) is used).

We then examined the stability of these ‘best’ parameter
values by identifying all of the experiments for which all of
the parameter values fell within the range of those identified
as the top 2%. Figure 5 shows the number of trials it took
for each of these experiments to achieve the goal. From these
figures we can identify that where TD(0) was used, all four
configurations demonstrated good stability of the identified
parameter combinations. In contrast, when using TD(λ), the
configuration using random SSP representation demonstrated
markedly worse stability than any of the other configurations.
Apart from this, the results from these experiments seem to
support the argument that, where the TD(0) rule is used, the
use of grid cells for representing the state in a spatial navi-
gation RL task results in better performance than other meth-
ods. On the other hand, where the TD(λ) rule is implemented,
all three networks using neurons in the hidden layer outper-
formed the baseline method, achieving the goal in close to
100 trials (compared to 134 trials for baseline, Table 2). This
demonstrates that tailored methods for representing the state
do at least as well as other methods.

TD(λ) SSP Results Exploration

Considering the instability of the TD(λ) with SSP represen-
tation configuration, we felt it necessary to further explore
this configuration in an attempt to identify the cause of the
instability. In Figure 6, we can see all of the combinations of
hyper-parameter values tested in the NNI experiment. Whilst
a wide range of values was explored for most of the parame-
ters, it seems that there was somewhat less exploration of the
number of neurons in the hidden layer, and the number of di-
mensions used in the SSP representation. That is, in Figure
6, many of the lines seem to converge to the same few points
on the ‘Neurons’ and ‘Dimensions’ axes (indicating that most
of the NNI experiments used these few values), whilst tend-
ing to be more spread out along the other axes. Specifically,
the NNI exploration seems to have mainly tested 64 and 256
dimensions, and 4117 and 4480 neurons. One potential rea-
son why the NNI experiments did not explore these variables
as much is because there was little difference in performance

when exploring the values available for these two parameters,
and so the NNI stopped varying them. If this is the case, then
we may find better performance when setting the number of
neurons and dimensions to values outside the ranges used.
We therefore decided to force exploration of larger values for
these parameters by running experiments where only the di-
mensions or number of neurons were manipulated.

We examined the effect of adding dimensions by running
the same random SSP network using either 512 or 1024 di-
mensions. For the rest of the parameters, we chose a set of
values from the top 2%. Each value for the dimensions pa-
rameter was tested 20 times, with a different seed each time.
The results were compared with those obtained when the ran-
dom SSP representation used 256 dimensions. Figure 7 illus-
trates that whilst the mean number of trials needed to reach
the goal did decrease with increased dimensionality, the vari-
ability did not change, suggesting that increasing dimension-
ality did not effect the variability in performance.

We then examine the effect of larger numbers of neurons
in the hidden layer. Using the same procedure as above, we
compared performance when using the original 4,117 neu-
rons to networks whose hidden layer contained 5,000, 6,000,
7,000, 8,000, 9,000 and 10,000 neurons. Figure 8 illustrates
that changing this variable did not improve the stability of the
network’s performance. Given this instability, it seems that
good performance while using random SSPs to represent the
state relies on the luck of the seed.

Discussion
This study explored the impact of using biologically inspired
state representations on the performance of a TD-based AC
network on a simple RL task. Two learning rules, TD(0)
and TD(λ), were implemented, and performance on the Gym
MiniGrid task was compared when the state was represented
using a baseline tabular method without neurons, vs. one-hot,
random SSP, or grid-cell SSP methods with neurons. The
NNI toolkit was used to conduct a search of the parameter
space for each of the 8 configurations. The results of these
experiments were used to identify parameter sets that resulted
in the network achieving a rolling average reward of 0.95 over
the last 100 learning trials in the fewest number of trials.

We found that the best 2% of configurations solved the
MiniGrid task in under 200 trials for all learning rules and



Figure 6: A parallel coordinates plot showing all of the hyperparameter value combinations tested in the NNI experiment using
TD(λ) and SSP representation. Each line on this plot corresponds to one NNI run, where the values for each parameter are
indicated by where that line crosses each vertical axis. The final axis (N Trials, far right) as well as the colour of the lines shows
the number of trials needed for that run to reach the goal rolling mean reward.
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Figure 7: Point plot showing the mean number of trials
needed to reach the goal rolling mean reward, and 95% confi-
dence intervals, for each experiment using different N dimen-
sions in the SSP representation.

representation methods (Table 2). Where TD(0) was used,
the minimum number of trials needed was 149 and 127 for the
baseline and one-hot configurations, compared with 108 and
105 for the random SSP and grid-cell configurations (respec-
tively). Similarly, with TD(λ) the baseline method required a
minimum of 134 trials compared with 102 (random SSP) and
99 (grid cells).

In contrast, in Bartlett et al. (in press) we found that, fol-
lowing a manual search of the parameter space, grid cells
markedly out-performed all three of the other representation
methods regardless of learning rule. A manual search of the
parameter space was able to identify a set of parameters such
that, when using the TD(λ) learning rule, the grid cell net-
work was able to achieve the goal rolling mean reward in an
average of 105.4 trials, and 122.2 trials when using TD(0)
(with the next fastest configurations achieving an average of
142.8 and 156.6 trials respectively). This is comparable to the
99–103 trials identified in the present study. However, fol-
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Figure 8: Point plot showing the mean number of trials
needed to reach the goal rolling mean reward, and 95% confi-
dence intervals, for each experiment using different numbers
of neurons in the hidden layer.

lowing the optimization carried out in the present study, we
found that the advantage of grid cells over the other represen-
tation methods was much smaller than previously indicated.
It is still worth noting, though, that whilst the baseline and
one hot approaches do perform well once optimized, it seems
that grid cells do not necessarily require optimization.

It should be noted that the Mini Grid task used in this study
is fairly simple, so whilst the current study does not necessar-
ily indicate a huge advantage of using grid cells over other
methods, previous findings that grid cells do result in faster
learning (Gustafson & Daw, 2011) suggests that when tested
on more complex tasks, performance with grid cells may de-
viate more from non-biologically inspired methods.

Online Resources
Experiment and analysis scripts can be found in the
github repository (https://github.com/maddybartlett/
Fast RL with Bio Based Reps).
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