
 

Estimating ACT-R Declarative Memory Parameters Using a Drift Diffusion Model 
 

Gillian Grennan (gillkg@uw.edu) 
Department of Psychology, University of Washington, Seattle, WA 98105, USA 

 
Andrea Stocco (stocco@uw.edu) 

Department of Psychology, University of Washington, Seattle, WA 98105, USA 
 

Abstract 
Accurately fitting cognitive models to empirical datasets 
requires a robust parameter estimation process which is often 
arduous and computationally expensive. A way to mitigate 
this challenge is to integrate participant-specific and 
efficient mathematical models such as a drift diffusion 
model (DDM) into the parameter estimation process of 
cognitive modeling. In this study, we exhibit a clear mapping 
of the parameters outputted by DDM onto the declarative 
memory parameters utilized in the cognitive architecture, 
ACT-R. We show a fairly consistent recovery of simulated 
ACT-R parameters using DDM and a successful application 
in using this method to optimize ACT-R simulated fit to an 
empirical dataset. Notably, we show that the DDM-derived 
estimated parameters are individualized to the original 
participant, providing a unique opportunity for parsing out 
individual differences in cognitive modeling. This method 
outlined here allows one to estimate ACT-R parameters 
without the need to manually build and run an ACT-R model 
while also allowing for neural contextualization of DDM 
parameters. 
Keywords: Drift Diffusion Model, Cognitive Architecture, 
Computational models, Individual Differences 

Introduction 
A common challenge associated with cognitive modeling 
is how to accurately capture individual differences within 
the parameters that comprise these models. Parameter 
estimation now relies on unfastidious and computationally 
expensive methods such as manual parameter grid-
searches. Incorporating a statistically rigorous and 
behaviorally-valid computational model such as a drift 
diffusion model into the parameter estimation process of 
ACT-R may allow for better empirically-informed ACT-
R models. Similarly, although DDM has been widely 
replicated in behavioral paradigms and the outputted 
parameters show distinct and replicable behavioral 
correlates (Ratcliff & Tuerlinckx, 2002; Voss et al., 2004), 
studies examining the neural substrates of the DDM 
parameters have large variability in their results (Gupta et 
al., 2022). Integrating DDM into a well-established 
cognitive architecture such as ACT-R (Anderson, 2007) 
would allow DDM parameters to have robust neural 
correlate interpretations. Further, accurate ACT-R 
parameter estimation would eliminate the need for the 
modeler to manually build and run an ACT-R model to use 
for neural or cognitive interpretation in the context of 
declarative memory tasks, increasing the accessibility of 
these methods to a wider array of non-modeler 
researchers. 

ACT-R Declarative Memory 
ACT-R is a well-established cognitive architecture that 
includes a highly reliable model of declarative memory 
(Anderson et al., 2004; Anderson, 1974; Kotseruba & 
Tsotsos, 2020; Pavlik & Anderson, 2005). Declarative 
memories or knowledge within ACT-R are encoded in 
record-like structures called chunks, representing 
semantic memories. ACT-R’s declarative memory module 
functions by making less used chunks harder to retrieve 
over time through their assigned activations. Chunks are 
selected on the bases of their activation, a quantity that 
reflects the log odds that the chunk will be needed. 
Specifically, the activation Ac of a chunk c at time t is 
computed as: 

Ac = ∑i (ti - t)-d   (1) 

where ti represents the time of the i-th event in which c was 
encoded or retrieved. Retrieval of information from 
memory can be viewed as a process of evidence 
accumulation, where environmental or internal cues 
contribute evidence to competing chunks within one’s 
memory. These chunks are competing for retrieval and the 
first chunk to accumulate enough evidence to be chosen, 
crosses a “decisional threshold” and a response is initiated 
(Anderson, 2007). 

Drift Diffusion Model 
A drift diffusion model (DDM; Ratcliff, 1978; Voss et al., 
2013) has been proposed to model a two-alternative 
forced-choice task and is based on early models of the 
continuous random walk process (Stone, 1960; Wald & 
Wolfowitz, 1948). The DDM is based on several basic 
assumptions: during a binary decision process, 
information will accumulate at a continuous rate and this 
accumulation process can be explained using a Weiner 
diffusion process (Ratcliff & McKoon, 2008; Ratcliff & 
Tuerlinckx, 2002). Information accumulation is 
characterized by a constant systemic component with an 
added component of normally distributed random noise. 
This assumption of random noise is meant to emulate 
repeated processing of the same stimulus or same type of 
stimulus and explains the variance in response times and 
erroneous response errors observed in empirical 
reaction/accuracy distributions (Ratcliff & McKoon, 
2008; Ratcliff & Tuerlinckx, 2002; Voss et al., 2013). The 
decision process is terminated as soon as the systemic 
counter accumulates information to the point of reaching 



 

one of the two decisional thresholds. The basic model can 
be depicted in Figure 1A. 
A drift diffusion model is distinguished by its distinct 
parameters estimated from empirical decision time 
distributions. The first parameter, or drift rate (v) is 
calculated through the average of the rate of evidence 
accumulation from the start of the decision process 
(beginning of evidence accumulation) until a decision is 
made (evidence accumulator reaches either upper or lower 
decisional threshold). Previous studies have shown that 
drift rate can be interpreted as a measure of cognitive 
speed and is affected by value associated with the stimulus 
as well as the separation between choices (Bond et al., 
2018; Ratcliff & Frank, 2012). We are similarly able to 
estimate the decisional threshold (a). The decisional 
threshold represents the amount of evidence needed to 
make a decision. A higher decisional threshold indicates a 
larger distance between the lower and upper decisional 
thresholds. Decisional threshold has been shown to highly 
depend on a speed-accuracy tradeoff and is sensitive to 
changes in instructions emphasizing speed over accuracy 
or vice versa (Mulder et al., 2013). We are also able to 
calculate the decisional starting point, or decisional bias 
(z). The decision starting point represents the starting bias 
at the beginning of the decision process and represents the 
relative distance to the upper/lower decisional threshold. 
A higher decision starting point would represent bias 
towards the upper decisional threshold. Finally, we are 
able to estimate the extradecisional time component (t0) 
which represents the time used to complete all processes 
not directly related to the decisional process such as 
stimulus encoding or motor execution of the response. 

Mapping DDM Parameters onto ACT-R  
Recent work has shown that we can treat the ACT-R 
declarative memory module as an evidence accumulator 
model, and therefore can map the actual evidence 
accumulator model (DDM) parameters onto the 
declarative memory parameters within ACT-R (van der 
Velde et al., 2021). The total time required to retrieve the 
winning chunk c with activation Ac within ACT-R is 
defined by the equation below. Included in the equation is 
the latency factor F. 
 

𝑅𝑇! = 𝐹𝑒"#! + 𝑡$% (2) 

Over a trial average, this equation can be rewritten to 
derive the expected time for retrieval across a series of 
trials using the average latency factor 𝐹(	and average 
activation 𝐴!: 
 

𝐸(𝑅𝑇!) = 	
&'

$"!
+ 𝑡$% (3) 

As the DDM assumes evidence accumulation at a constant 
rate, the expected time for accumulator c to reach the upper 
decisional threshold a is dependent on the decisional 
starting point z and drift rate v with a scaling factor t0 
(Bogacz et al., 2006). 

 
𝐸(𝑅𝑇!) = 	
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*
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The DDM is different from other evidence accumulator 
models in which there are two separate accumulation 
processes occurring for each choice (or chunk) as DDM 
incorporates the difference of the two possible decisions 
into the evidence accumulation process (Bogacz et al., 
2006). In DDM, the probability P of accumulator c with 
drift rate v of reaching the upper decisional threshold a is 
defined by the equation below. 
 

𝑃! =	
,

,-$#$%
		 (5) 

This equation is reminiscent of the probability of receiving 
a certain chunk over a competitor in ACT-R: The 
probability P of retrieving chunk c with activation Ac over 
a foil f with activation Af can be represented by the 
equation below. 
 

𝑃! =
$"!
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Using the above equations, we can then map ACT-R 
parameters onto those outputted by DDM (Figure 1B). 
𝐹(	in ACT-R (latency factor) is related to the relationship 
between the upper decisional threshold and the decisional 
starting point or bias in DDM. 
 

𝐹( = 𝑎 − 𝑧 (7) 

Drift rate v within DDM is related to the difference 
between the activations of the competing chunks within 
ACT-R. Here, we adapted the equation to reflect the 
difference of the average activations of competing chunks 
c and f represented by 𝛥𝐴. 
 

𝛥𝐴 =	−2𝑣  (8) 

Similar to previous work, we see a direct equivalency of 
the extradecisional component within an evidence 
accumulator model of DDM and that within ACT-R (van 
der Velde et al., 2021). 
 

𝑇$% =	 𝑡+ (9) 

 
Figure 1: (A) Illustration of the diffusion model with the 
four main parameters (a, z, v, and t0) with three exemplary 
trials (in blue).  (B) The same model depiction but with the 
equivalency of ACT-R parameters using equations (7)-(9). 



 

Simulation: Recovering ACT-R Parameters 

Materials and Methods 
Data. The data used in this analysis was simulated using 
ACT-R with code adapted from van der Velde et al. 2021. 
ACT-R was used to simulate 25 model participants 
undergoing a declarative memory retrieval task with two 
competing chunks, c and f. Time to reach the decision 
boundary of the winning chunk was recorded in seconds 
(referred to as response time). A “correct” trial was 
indicated when chunk c was the first accumulator to reach 
the decision boundary. Overall DDM fit can be affected by 
outlier reaction times (Lerche et al., 2017) at lower trial 
numbers so an IQR outlier correction was applied to 
simulated data prior to model fitting. Simulations were 
repeated with a varying number of trials per model 
participant, ranging from 25 to 5000 to best understand the 
minimum trial size needed for accurate parameter 
recovery. 
 
Model Fitting. The DDM was fitted individually to each 
model’s simulated response/accuracy distributions using 
the ddiffusion density function within the rtdists package 
in R (R version 3.2.0; rtdists 0.8-3). For each model 
participant, we used DDM to estimate parameters a, z, v, 
and t0. We likewise allowed the model to fluctuate on an 
inter-trial basis by including inter-trial variability 
parameters that account for changes in t0, z, and v from 
trial-to-trial (variability parameters: st0, sz, sv). These 
parameters have been shown to help with DDM fit to the 
empirical distribution and improve accuracy of parameter 
estimation (Lerche & Voss, 2016). ACT-R parameters 
(𝛥𝐴, 𝐹(, 𝑇$%) were recalculated using the equations (7)-(9) 
previously described. 
 
Results 
To understand the optimal trial size for consistent ACT-R 
parameter recovery we attempted the parameter recovery 
simulation at varying trial sizes from 25 trials per 
participant to 5000. Across all trial sizes we calculated 
absolute error and correlations across the recovered 
parameters:	𝐹(, 𝑇$%and 𝛥𝐴. Notably, we saw comparable 
absolute errors and correlations of original vs. recovered 
parameters at trial sizes of 100 trials per simulated 
participant or greater (Figure 2; 𝑇$% at 100 trials per 
participant: r = 0.97, 𝑇$% at 5000 trials per participant: r = 
0.99; 𝐹(	at 100 trials per participant: r = 0.46, 𝐹(	at 5000 
trials per participant: r = 0.48). 

 
Figure 2: Absolute error (A) and Pearson correlation 
values (B) across trial sizes 25-5000 per participant across 
the three recovered parameters: 𝛥𝐴 (shown in blue), 𝐹( 
(shown in orange), and 𝑇$% (shown in green). Mean 
absolute error (A) or mean correlation (B) across all 
parameters is shown in black. 
 
With just 100 trials per participant, the original inputted 
ACT-R parameters showed a fairly linear and consistent 
recovery with DDM parameter estimation (Figure 3). 
 

 
Figure 3: Scatter plot of original (x-axis) versus recovered 
(y-axis) parameter values for 25 model participants with 
100 trials per participant for the three recovered 
parameters: 𝛥𝐴 (left: shown in blue), 𝐹( (center: shown in 
orange), and 𝑇$% (right: shown in green). 
 
We do, however, see larger variability in the recovery of 
the difference of activation rates (𝛥𝐴) with few outlier 
participants causing large increases in the error observed 
in the recovery. This effect did not seem to reduce with 
increased trials per participant (Figure 4). 
 



 

 
Figure 4: Scatter plot of original (x-axis) versus recovered 
(y-axis) parameter values for 25 model participants with 
25-5000 trials per participant for the three recovered 
parameters: 𝛥𝐴 (shown in pink), 𝐹( (shown in green), and 
𝑇$% (shown in blue). 

Parameter Estimation in an Empirical Dataset 

Materials and Methods 
Data. The data used here come from an experiment carried 
out by Verstynen (2014) and freely available on 
OpenNeuro (dataset ds000164). Twenty male and ten 
female participants performed the color-word Stroop task 
(Botvinick et al., 2001; Gratton et al., 1992; MacLeod, 
1991; Stroop, 1935) which consisted of congruent, 
incongruent, and neutral stimulus conditions. Participants 
were presented with word-stimuli and were instructed to 
respond to the color in which the word was printed and to 
ignore the meaning of the printed word. In a congruent 
condition, the words “GREEN”, “BLUE”, and 
“YELLOW” were displayed in the colors green, blue, and 
yellow respectively. The incongruent condition showed 
words whose meaning was a different color than the ink in 
which the printed word was displayed (i.e., the displayed 
word was “GREEN” in blue ink). In neutral conditions, a 
non-color word was presented in an ink color (i.e., the 
word “HAT” printed in blue ink). Participants responded 
by pressing different buttons, with different right-hand 
fingers, for each color (e.g., red: index; green: middle; and 
yellow: ring finger). Each participant completed 120 trials 
(42 congruent, 42 neutral, 36 incongruent). Trial types and 
stimuli types were pseudorandomized in an event-related 
fashion. Response time and accuracy were recorded for 
each trial. The data was collected as part of a larger study 
and more information of the participants and procedure 
can be found in Verstynen (2014).   
 
Model Fitting. The DDM was fitted to each participant’s 
response-accuracy distribution separately. To optimize 
computing speed and for added statistical rigor, DDM was 
fitted using the Fast-dm-30.2 toolbox (Voss & Voss, 
2007). Each participant’s parameter optimization was 
statistically verified using the Kolmogorov-Smirnov 
method. Similar to the simulation experiments, inter-trial 

variability parameters (st0, sz, sv) were allowed to fluctuate 
across trials during the parameter estimation process to 
optimize DDM fit. ACT-R parameters (𝛥𝐴, 𝐹(, 𝑇$%) and 
were again recalculated from the outputted DDM 
parameters (v, z, a, and t0) using equations (7)-(9). DDM 
density plots were created using the ddiffusion density 
function within the rtdists toolbox in R (R version 3.2.0; 
rtdists 0.8-3). 
 
ACT-R Stroop Task. A simple model of the Stroop task 
was implemented to test the possibility of translating 
DDM parameters directly into ACT-R models. This model 
borrows the central idea of previous models of response 
interference in the Stroop (Lovett, 2002) and Simon tasks 
(Stocco et al., 2017) and captures the Stroop effect as 
interference in the color name retrieval due to competing 
sources of activation. Specifically, the model responds by 
initially focusing on the word’s color. While attending to 
the color, the model attempts to retrieve an associated 
color name. This retrieval process is aided by activation 
spreading from the attended color to the corresponding 
name (e.g., from the color green to the word “green”), 
which confers an additional boost of activation to the 
correct color name over the equally active names of other 
colors. Once a color name is retrieved, a production rule 
performs the corresponding motor response. The 
simplicity of this model makes the DDM parameters 
immediately translatable. Specifically, the difference in 
mean activation between competing chunks (𝛥𝐴) 
corresponds to the contribution of spreading activation 
from the word’s color, and the Ter parameter corresponds 
to the duration of motor execution (the “motor burst time” 
parameter) once the visual encoding time (fixed and 
maintained at its default value of 50ms) and the execution 
time of the necessary productions (three productions for 
50ms each) are accounted for. 
Note that although 𝑇$% by definition represents time 
components split across both the visual encoding and 
motor module, functionally it does not make a difference 
which of these 𝑇$% is incorporated into as regardless it will 
be added on to overall reaction time. We ran 
individualized ACT-R models with these inputted 
parameters for each of the participants with the same 
number of trials as in the empirical study (42 congruent, 
42 neutral, and 36 incongruent). 

Results 
We fit DDM to each participant’s data individually. 
Across all participants, we observed a reasonable fit of 
DDM to the empirical distribution which was further 
verified through the Kolmogorov-Smirnov test statistic (p 
= [0.83–0.99] across all stimulus types). This provided 
reassurance that the outputted DDM parameters were 
reasonably estimated and could be used for subsequent 
ACT-R parameter recovery. Excitingly, we were able to 
estimate reasonable ACT-R parameters: 𝐹(,  𝑇$% ,	and 
difference of activation rates between the competing 



 

chunks (𝛥𝐴). Although we observed moderate variability 
across subjects and condition types, 𝐹( (across all 
conditions 𝐹(	= 0.64 ± 0.13),  𝑇$% (across all conditions 𝑇$% 
= 0.61 ± 0.07), 𝛥𝐴 (across all conditions 𝛥𝐴 = 6.13 ± 
1.74) and were within typical ranges according to previous 
ACT-R studies (Anderson et. al, 1998). 
We were further interested to see if ACT-R simulated data 
of a Stroop task that utilizes these estimated parameters 
would provide a comparable reaction time/accuracy 
distribution to the empirical data we originally inputted 
into the DDM. Across the 28 participants we saw 
relatively linear recovery of mean reaction time and 
accuracy across participants (Figure 6A). To ensure these 
parameters were indeed individualized to the participant 
and not a factor of task, we randomized the estimated 
parameters across participants and again compared the 
recovery of mean reaction time/accuracy across 
participants. As seen in Figure 6B, this recovery is 
substantially worse if parameters are not matched to the 
original participant, providing evidence that this parameter 
estimation method is sensitive to and sustains individual 
differences in its integration into ACT-R. 

 
Figure 6: Mean accuracy and reaction time of the original 
empirical subjects (x-axis) versus the ACT-R simulated 
data (y-axis) with the DDM-Derived participant-specific 
ACT-R parameters inputted (A) versus if the DDM-
Derived ACT-R parameters are randomized across 
different subjects (B). 

Discussion 
In this paper, we have presented evidence of an ability 

to integrate DDM parameters into the ACT-R parameter 
estimation process. Across trial sizes as low as 100 trials 
per model participant, we observed a fairly consistent and 
linear recovery of the extradecisional time component 𝑇$%, 
the latency factor 𝐹(, and difference of activation rates 
between the top two competing chunks 𝛥𝐴,	within a 
simulated declarative memory retrieval task. Both 𝑇$% and  
𝐹(	showed a relatively consistent increase in correlation 
and decrease in observed absolute error as trial sizes 
increased from 25-5000 trials per participant. 
Interestingly, in observing the recovery of 𝛥𝐴, we 
observed a “zig-zag” pattern in correlation and observed 
absolute error as trial sizes increased instead of the steady 
increase in recovery correlation/decrease in absolute error 
as observed with the other parameters. We expect this is 
due to the presence of 1-4 simulated participants within 

each simulation in which the estimated DDM drift rate (v) 
was very high due to the presence of numerous trials with 
extremely short simulated reaction times (<200ms). As 
our simulated reaction time/accuracy distributions were 
drawn from random distributions, the presence of model 
participants with trials like this were randomly observed, 
which caused the odd pattern of recovery (i.e., seemingly 
better observed absolute error in trial sizes of 50 compared 
to 100 trials per participant). In use with empirical data and 
non-simulated participants, this becomes less of an issue 
as extremely short reaction times are typically removed by 
way of outlier correction prior to model fitting. However, 
to not only reduce the presence of these apparent outliers 
but similarly increase the statistical rigor of the DDM 
parameter estimation, we plan to integrate an optimizer 
function into the process of fitting the DDM to the original 
dataset. From there, one could choose the set of parameters 
with an optimized fit before mapping to ACT-R 
parameters. One could similarly utilize existing software 
such as the Fast-dm-30.2 toolbox (Voss & Voss, 2007) 
which incorporates optimization methods without added 
burden to the user. 

To further emulate this method’s applicability, we 
utilized this DDM-ACT-R parameter estimation method 
on an empirical data set of a Stroop task (Verstynen, 
2014). We demonstrated that by using DDM-derived 
parameters, we were able to estimate ACT-R parameters 
within typical ranges according to prior studies. Most 
excitingly, when we integrated these DDM-derived 
parameters into an ACT-R simulated Stroop model, we 
were able to accurately recreate the reaction time/accuracy 
distributions observed within the empirical dataset as 
shown by comparing empirical versus recovered mean 
reaction time and accuracies. Notably, these parameters 
seemed to be individualized to the participant, as 
randomization of these parameters showed a worse 
recovery of empirical mean reaction time and accuracy 
across participants. Further comparison experiments are 
needed to understand whether DDM-ACT-R parameter 
estimation method is indeed more accurate/individualized 
compared to common parameter estimation methods such 
as parameter grid searches or sweeps, although this DDM-
ACT-R method has been shown to be quicker and less 
computationally expensive in this application. 

While this method has shown promising results in 
optimizing incorporating empirical data into a simulated 
model, the Stroop ACT-R model we used is significantly 
simplified compared to existing models of this task that 
have been based on the neurocognitive properties this task 
elicits (Lovett, 2002; Stocco et al., 2017). In applications 
confined to a declarative memory task, we are hopeful that 
this method will be relevant beyond binary decision tasks 
to multi-alternative decisions, again increasing the 
usability of drift diffusion models. However, future work 
utilizing this method outside of the scope of a declarative 
memory task (i.e., one that relies on procedural 



 

complexity) is needed to understand the breadth of its 
applicability. 

Individualized, consistent and accurate estimation of 
ACT-R parameters with this method, even on simple tasks, 
would allow us to have a proxy measure for task neural 
dynamics in datasets that only have behavioral data, 
greatly reducing the need for expensive and time-
consuming fMRI data collection. The integration of DDM 
into ACT-R can further give neural context to the 
parameters used in DDM, an application of DDM that has 
been inconsistent in previous work (Gupta et al., 2022). 

In summary, we have exhibited a clear integration of the 
drift diffusion model into the cognitive architecture of 
ACT-R. This relationship contributes to a larger effort in 
optimizing the utilization of empirical data in informing 
cognitive models as well as in the overall integration of 
modeling methods. 
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