
Predicting Learning in a Troubleshooting
Task using a Cognitive Architecture-Based Task Analysis

Frank E. Ritter (frank.ritter@psu.edu), Deja Workman, and Shan Wang
College of IST, Penn State
University Park, PA 16802

Abstract

We present a new way to do task analysis that includes
learning. This approach starts with a hierarchical task analysis
of a troubleshooting strategy and applies a power law of
learning to modify the time, mimicking the ACT-R learning
equations. We apply this approach to finding faults in the
Ben Franklin Radar (BFR) system, a 35-component system,
designed to study troubleshooting and learning. In this task,
faults are introduced into the BFR, and the participants are
responsible for finding and fixing these automatic faults. Pre-
vious models in Soar took up to 6-9 months of graduate
student to create. This model can be created more quickly
and provides a model between GOMS and a full cognitive
architecture-based model. The predictions will be compared
to the aggregate and individuals’ data (N=111) and lessons
will be reported.

Keywords: ACT-R, learning, task analysis, troubleshooting

Acknowledgements: This work was supported by ONR,
N00014-18-C-7015 and N00014-15-1-2275. Charles River
Analytics implemented the MENDS simulation, provide it
under license, and provided comments and support on the
process.

Introduction
Can we examine a particularly complex task and predict
how long each trial will take while the task is learned with-
out creating a full information processing cognitive
model? In this paper we create predictions of a complex
task using GOMS and the learning equations, thus extend-
ing the GOMS approach and providing a way to make
approximate predictions of learning a task.

To illustrate this approach, we make detailed predictions
about trouble shooting a complex task where the fault in the
circuits may vary in difficulty. We use GOMS and learning
equations.

The rest of the paper describes the task and a model used
to create a series of predictions of doing the task and learn-
ing. We then present the study used to gather human per-
formance data. We then describe the comparison we will
make with the model’s predictions to the human data in
aggregate form and individually, and already can draw some
insights.

Task
We needed a complex task to study. The Ben Franklin
Radar (BFR), shown in Figures 1 and 2, is a deliberately 5x
larger system than the Klingon Laser Bank task that has
been previously used to study problem solving, learning,
and transfer (Bibby & Payne, 1996; Friedrich & Ritter,

2020; Ritter & Bibby, 2008). The Klingon Laser Bank task
with 7 components initially takes about 30 s and with 20
trials takes about 7 s.

The MENDS simulator was created for the BFR, shown
in Figure 1. The schematic and interface can be taught to
participants in a 32-page online tutor created in D2P (Ritter
et al., 2013). It takes about 30 min. to learn declarative
information about it and the task (Ritter, Tehranchi, Brener,
& Wang, 2019). The schematic shows five subsystems. The
subsystems vary in their complexity and connectivity within
them and across subsystems. The blue lines in Figure 1 are
power connections; the red lines are information; the purple
lines are both. The schematic also identifies certain compo-
nents that have their status displayed on the front panel of
the BFR.

Our task was created to support learning troubleshooting
within the confines of a study, and to be more complex than
the Klingon Laser Bank task, but not so complex that it
would take more than an hour to learn. This system can be
and has been realized in several ways with different com-
plexity. The task that we will focus on is to find a single
broken component. Single broken faults create a unique
light configuration and are always solvable.

The task requires declarative knowledge about the sche-
matic and interface. It also requires some recognition
memory and perhaps recall of the components. The task
also supports creating procedural knowledge from the
declarative knowledge by doing the task.

Figure 1. Schematic of the Ben-Franklin Radar simulation.

Transmitter
Antenna

Duplexer

Power	Supply

Processor

Transmitter

Synchronizer

Sine	Wave	
Oscillator

Overdriven	
Amplifier

RC	
Differentiator

Limiter

Frequency	
Synthesizer

Stage	1	
Modulator

Stage	2	
Modulator

Stage	3	
Modulator

Transmitter
Antenna

Transmitter	
Waveguide

Receiver	
Waveguide

Transmitter	
transmission	

line

Receiver	
Transmission	

Line

Low	Noise	
RF	

Amplifier

Mixer	
Detector

IF	
Amplifier

Video	
Detector

Video	
Amplifier

Local	
Oscillator

AFC	Mixer

AFC	
Amplifier

AFC	Frequency	
Discriminator

Control	
Circuit

Gate	
Circuit

Sweep	Control	
Circuit

Mechanical
bearing
information

Sweep	Generator	
Circuit

Intensity	Gate	
Generator

Cathode	Ray	
Tube

Adjuster

Receiver
Antenna

*
*

* *

*

*	=	indicator	 light	for	cabinet

MENDS	v.3.20	(12/21/2018)	FT

PS/SCCPS/SW-O

PS/AFC-M

PS/S1-M

L/S1-M

S1-M/RF-A1

S2-M/RF-A2

S3-M/RF-A3

L/S2-M

L/S3-M

PS/D

PS/S2-M

PS/S3-M

PS/FS

*

One	Amplifier	 and	Modulator	 pair	only

RF	Amplifier	3

RF	Amplifier	2

RF	Amplifier	1

*

*

*
Duplexer	
Bypass

Transmitter	
Transmission	

Line

Tracker

Indicator

PS/LNRF-A

Figure 2. A snapshot of the MENDS simulation. In this

picture, the fault is in the Processor subsystem.

A Simple Task Model of Learning and Fidelity
To troubleshoot the task (simplest method) the user clicks
for the next problem, examines the lights, clicks on a tray,
and examines its contents. They must then choose the bro-
ken component by clicking on it and clicking done.

We can start with some insights that are already apparent.
The BFR task is designed to be more complex than the
Klingon Laser Bank task. Thus, there are more predictions
to generate (7 vs. 35). Ritter and Bibby (2008) found that
one strategy matched the majority of participants. Seven you
can do by hand, 35 requires more infrastructure. Friedrich
and Ritter (2020) found with more relaxed instructions there
were more strategies. With this complexity may come even
further strategies to solve this task. Thus, this model will
initially present just one of these strategies.

The model represents the structure of the BRF as a series
of connections in a matrix. To create the structure of the
model, a binary schematic was created in Excel to represent
the component dependencies found in the BFR. Python
converted this matrix into a data frame storing components’
input and outputs—that is, the list of other components that
a component itself expects to receive power from or send
power to. The data structure also dynamically stores the
component status and light, which respectively represent
whether the component is functioning properly and whether
it is receiving power, they are both binary variables.

 In some sense, we thus create an ad hoc domain specific
language (DSL) cognitive modeling language (Kaulakis,
2020) using Excel and Python for reading in circuit matri-
ces. This approach would support creating models of similar
structures and is at this point be fairly direct and quick to
use. The model uses these structures to generate times to
find a fault. Currently, the model can set up and run the task,
and solve for a fault.

MakeFault is responsible for the creation of the fault, it
begins by calling the clearFault function and then it gener-
ates a random number that is within the bound of the size of
the data frame, which corresponds to one of the 36 compo-
nents of the system—it cannot choose the power supply or
any of the switches as a fault because these are not tasks we
present participants within the actual study. Propagate is
responsible for computing the effect of the fault. This func-
tion identifies all the outputs of the piece, and subsequently

turns their light off as they are no longer receiving all of
their necessary inputs due to the fault.

The holistic responsibility of this operation is not only to
recreate the way in which the system breaks itself, more
importantly is the program’s ability to locate and fix its own
faults. This logic is stored predominantly in the FindFault
function, though it calls upon external elements as well as
the mental operator function. FindFault is meant to mimic
the way in which we believe participants solve the problem
using a simple strategy that they are presented with.

Human Participant Data that We Have So Far
We have two sets of data. In the MENDS task, Ritter et al.
(2019) saw a subject with 10 minutes of practice that went
from 60 s to 22 s. And, we have finished a study (N=110)
that has more data. We are analyzing it now and have
learning curves for all participants that we will compare to
this model. The BFR task does take about 5 times longer
than the original task both initially and at 20 trials.

Discussion and Conclusion
The model is still being developed, but offers a way to pre-
dict learning for static approaches. This model already pre-
dicts that later faults take longer, that learning is inevitable,
that many faults take different times, and surprisingly, that
many faults would take the same time but use different
subtasks to get there. For example, fixing a component late
in an early tray may take as long as a component in a later
tray but displayed earlier within that tray.

References
Bibby, P. A., & Payne, S. J. (1996). Instruction and practice

in learning to use a device. Cognitive Science, 20(4),
539-578.

Friedrich, M. B., & Ritter, F. E. (2020). Understanding
strategy differences in a diagrammatic reasoning task.
Cognitive Systems Research, 59, 133-150.

Kaulakis, R. (2020). Domain-specific languages as a
method for representation and evolutionary search
among global solution space of cognitively plausible
algorithmic behaviors. Unpublished PhD thesis,
College of IST, Penn State, University Park, PA.

Ritter, F. E., & Bibby, P. A. (2008). Modeling how, when,
and what is learned in a simple fault-finding task.
Cognitive Science, 32, 862-892.

Ritter, F. E., Tehranchi, F., Brener, M., & Wang, S. (2019).
Testing a complex training task. In Proceedings of the
17th International Conference on Cognitive Modeling
(ICCM 2019), 184-185.

Ritter, F. E., Yeh, K.-C., Cohen, M. A., Weyhrauch, P.,
Kim, J. W., & Hobbs, J. N. (2013). Declarative to
procedural tutors: A family of cognitive architecture-
based tutors. In Proceedings of the 22nd Conference on
Behavior Representation in Modeling and Simulation,
13-BRIMS-127. 108-113. Centerville, OH: BRIMS
Society.

