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Abstract 

We present a new way to do task analysis that includes 
learning. This approach starts with a hierarchical task analysis 
of a troubleshooting strategy and applies a power law of 
learning to modify the time, mimicking the ACT-R learning 
equations.  We apply this approach to finding faults in the 
Ben Franklin Radar (BFR) system, a 35-component system, 
designed to study troubleshooting and learning. In this task, 
faults are introduced into the BFR, and the participants are 
responsible for finding and fixing these automatic faults. Pre-
vious models in Soar took up to 6-9 months of graduate 
student to create.  This model can be created more quickly 
and provides a model between GOMS and a full cognitive 
architecture-based model.  The predictions will be compared 
to the aggregate and individuals’ data (N=111) and lessons 
will be reported.  
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Introduction 
Can we examine a particularly complex task and predict 
how long each trial will take while the task is learned with-
out creating a full information processing cognitive 
model?  In this paper we create predictions of a complex 
task using GOMS and the learning equations, thus extend-
ing the GOMS approach and providing a way to make 
approximate predictions of learning a task.   

To illustrate this approach, we make detailed predictions 
about trouble shooting a complex task where the fault in the 
circuits may vary in difficulty. We use GOMS and learning 
equations. 

The rest of the paper describes the task and a model used 
to create a series of predictions of doing the task and learn-
ing.   We then present the study used to gather human per-
formance data. We then describe the comparison we will 
make with the model’s predictions to the human data in 
aggregate form and individually, and already can draw some 
insights.    

Task 
We needed a complex task to study. The Ben Franklin 
Radar (BFR), shown in Figures 1 and 2, is a deliberately 5x 
larger system than the Klingon Laser Bank task that has 
been previously used to study problem solving, learning, 
and transfer (Bibby & Payne, 1996; Friedrich & Ritter, 

2020; Ritter & Bibby, 2008).  The Klingon Laser Bank task 
with 7 components initially takes about 30 s and with 20 
trials takes about 7 s.   

The MENDS simulator was created for the BFR, shown 
in Figure 1.  The schematic and interface can be taught to 
participants in a 32-page online tutor created in D2P (Ritter 
et al., 2013).  It takes about 30 min. to learn declarative 
information about it and the task (Ritter, Tehranchi, Brener, 
& Wang, 2019).  The schematic shows five subsystems. The 
subsystems vary in their complexity and connectivity within 
them and across subsystems. The blue lines in Figure 1 are 
power connections; the red lines are information; the purple 
lines are both. The schematic also identifies certain compo-
nents that have their status displayed on the front panel of 
the BFR.  

Our task was created to support learning troubleshooting 
within the confines of a study, and to be more complex than 
the Klingon Laser Bank task, but not so complex that it 
would take more than an hour to learn.  This system can be 
and has been realized in several ways with different com-
plexity.  The task that we will focus on is to find a single 
broken component. Single broken faults create a unique 
light configuration and are always solvable.  

The task requires declarative knowledge about the sche-
matic and interface.  It also requires some recognition 
memory and perhaps recall of the components.  The task 
also supports creating procedural knowledge from the 
declarative knowledge by doing the task.    

 
Figure 1. Schematic of the Ben-Franklin Radar simulation. 
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Figure 2. A snapshot of the MENDS simulation. In this 

picture, the fault is in the Processor subsystem. 

A Simple Task Model of Learning and Fidelity 
To troubleshoot the task (simplest method) the user clicks 
for the next problem, examines the lights, clicks on a tray, 
and examines its contents.  They must then choose the bro-
ken component by clicking on it and clicking done. 

We can start with some insights that are already apparent. 
The BFR task is designed to be more complex than the 
Klingon Laser Bank task. Thus, there are more predictions 
to generate (7 vs. 35). Ritter and Bibby (2008) found that 
one strategy matched the majority of participants. Seven you 
can do by hand, 35 requires more infrastructure. Friedrich 
and Ritter (2020) found with more relaxed instructions there 
were more strategies. With this complexity may come even 
further strategies to solve this task. Thus, this model will 
initially present just one of these strategies.  

The model represents the structure of the BRF as a series 
of connections in a matrix. To create the structure of the 
model, a binary schematic was created in Excel to represent 
the component dependencies found in the BFR. Python 
converted this matrix into a data frame storing components’ 
input and outputs—that is, the list of other components that 
a component itself expects to receive power from or send 
power to. The data structure also dynamically stores the 
component status and light, which respectively represent 
whether the component is functioning properly and whether 
it is receiving power, they are both binary variables.  

 In some sense, we thus create an ad hoc domain specific 
language (DSL) cognitive modeling language (Kaulakis, 
2020) using Excel and Python for reading in circuit matri-
ces. This approach would support creating models of similar 
structures and is at this point be fairly direct and quick to 
use.  The model uses these structures to generate times to 
find a fault. Currently, the model can set up and run the task, 
and solve for a fault.   

MakeFault is responsible for the creation of the fault, it 
begins by calling the clearFault function and then it gener-
ates a random number that is within the bound of the size of 
the data frame, which corresponds to one of the 36 compo-
nents of the system—it cannot choose the power supply or 
any of the switches as a fault because these are not tasks we 
present participants within the actual study. Propagate is 
responsible for computing the effect of the fault. This func-
tion identifies all the outputs of the piece, and subsequently 

turns their light off as they are no longer receiving all of 
their necessary inputs due to the fault.  

The holistic responsibility of this operation is not only to 
recreate the way in which the system breaks itself, more 
importantly is the program’s ability to locate and fix its own 
faults. This logic is stored predominantly in the FindFault 
function, though it calls upon external elements as well as 
the mental operator function. FindFault is meant to mimic 
the way in which we believe participants solve the problem 
using a simple strategy that they are presented with. 

Human Participant Data that We Have So Far 
We have two sets of data. In the MENDS task, Ritter et al. 
(2019) saw a subject with 10 minutes of practice that went 
from 60 s to 22 s. And, we have finished a study (N=110) 
that has more data. We are analyzing it now and have 
learning curves for all participants that we will compare to 
this model. The BFR task does take about 5 times longer 
than the original task both initially and at 20 trials.  

Discussion and Conclusion 
The model is still being developed, but offers a way to pre-
dict learning for static approaches. This model already pre-
dicts that later faults take longer, that learning is inevitable, 
that many faults take different times, and surprisingly, that 
many faults would take the same time but use different 
subtasks to get there. For example, fixing a component late 
in an early tray may take as long as a component in a later 
tray but displayed earlier within that tray.   

References 
Bibby, P. A., & Payne, S. J. (1996). Instruction and practice 

in learning to use a device. Cognitive Science, 20(4), 
539-578. 

Friedrich, M. B., & Ritter, F. E. (2020). Understanding 
strategy differences in a diagrammatic reasoning task. 
Cognitive Systems Research, 59, 133-150. 

Kaulakis, R. (2020). Domain-specific languages as a 
method for representation and evolutionary search 
among global solution space of cognitively plausible 
algorithmic behaviors. Unpublished PhD thesis, 
College of IST, Penn State, University Park, PA. 

Ritter, F. E., & Bibby, P. A. (2008). Modeling how, when, 
and what is learned in a simple fault-finding task. 
Cognitive Science, 32, 862-892. 

Ritter, F. E., Tehranchi, F., Brener, M., & Wang, S. (2019). 
Testing a complex training task. In Proceedings of the 
17th International Conference on Cognitive Modeling 
(ICCM 2019), 184-185. 

Ritter, F. E., Yeh, K.-C., Cohen, M. A., Weyhrauch, P., 
Kim, J. W., & Hobbs, J. N. (2013). Declarative to 
procedural tutors: A family of cognitive architecture-
based tutors. In Proceedings of the 22nd Conference on 
Behavior Representation in Modeling and Simulation, 
13-BRIMS-127.  108-113.  Centerville, OH: BRIMS 
Society. 


