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Abstract 

In the cyber world, deception through honeypots has been 
prominent in response to modern cyberattacks. Prior 
cybersecurity research has investigated the effect of probing 
action costs on adversarial decisions in a deception game. 
However, little is known about the cognitive mechanisms that 
affect the influence of probing action costs on adversarial 
decisions. The main objective of this research is to see how an 
instance-based learning (IBL) model incorporating recency, 
frequency, and cognitive noise could predict adversarial 
decisions with different probing action costs. The experimental 
study had three different probing action costs in the deception 
game: increasing cost probe (N = 40), no-cost probe (N = 40), 
and constant cost probe (N = 40). Across the three conditions, 
the cost for probing the honeypot webserver was varied; 
however, the cost for probing the regular webserver was kept 
the same. The results revealed that the cost of probing had no 
effect on probe and attack actions and that there was a 
significant interaction between different cost conditions and 
regular webserver probe actions over the trials. The human 
decisions obtained in the above experiment were used to 
calibrate an IBL model. As a baseline, an IBL model with 
ACT-R default parameters was built. In comparison to the IBL 
model with ACT-R default parameters, the results showed that 
the IBL model with calibrated parameters explained adversary 
decisions more precisely. Results from the model showed 
higher cognitive noise for cost-associated conditions compared 
to that of no-cost condition. We highlight the main implications 
of this research for the community.  

Keywords: deception, adversary, honeypots, attacker, 
Instance-based Learning Theory (IBLT), cognitive modeling, 
probing cost. 

Introduction 

Cyberattacks are deliberate attempts by the adversary to 

intrude into computer systems. Among the various 

cyberattacks, ransomware attacks increased by 105% in 2021 

(Taylor, 2022). Furthermore, attackers have employed 

phishing as the most common method of luring the public by 

making lucrative false promises (Taylor, 2022). This rapid 

increase in attacks drives the scientific community to find 

adaptable solutions for building secure cyberspace. 

Some security solutions, including intrusion detection 

systems (IDSs), filtering strategies, firewalls, etc. are 

available to assist in deterring cyberattacks (Aggarwal & 

Dutt, 2020; Aggarwal et al., 2022; Rowe & Custy, 2007; 

Scarfone & Mell, 2007; Shang, 2018). When an IDS detects 

any unusual behaviour, it shoots off a warning (Aggarwal & 

Dutt, 2020; Scarfone & Mell, 2007). IDSs are robust; 

however, they can also incur financial losses by generating 

false warnings (Shang, 2018). Filtering solutions assist in the 

removal of undesired content while maintaining secure 

access. This method could lead to bounded non-rational 

network agents coming to a consensus (Shang, 2018). In 

general, such an agreement could aid in the detection of 

intrusions before they become a cybersecurity risk (Shang, 

2018). Overall, these available solutions may not be able to 

assist in combating emerging cyberattacks. 

Cyber deception has been a successful method of thwarting 

cyber-attacks (Rowe & Custy, 2007). In fact, it has been able 

to reduce the overall cost of data breaches by 30% 

(BusinessWire, 2021). The main aim of cyber deception is to 

take human aspects into account in cyber situations while also 

improving security tools to reduce cyber-attacks (Rowe & 

Custy, 2007). Cyber deception has been employed via 

honeypots, which pretend to be real webservers (Almeshekah 

& Spafford, 2016). This method has been found to be 

beneficial in monitoring and mitigating cyberattacks. 

Deception in cybersecurity has been explored using 

mathematical and canonical games (Carroll & Grosu, 2009; 

Garg & Grosu, 2007; Kiekintveld et al., 2015). Kiekintveld 

et al. (2015) examined how a game-theoretical technique 

could be applied to manipulate information in adversarial 

environments. Similarly, Garg and Grosu (2007) proposed a 

mathematical framework for a security game involving 

deception. Carroll and Grosu (2009) described the interaction 

between an adversary and a defender as a signalling game. 

Recent behavioral cybersecurity research has focused more 

on technological aspects that influence adversarial decisions 

in cybersecurity. Some of them include network topology, 

timing and amount of deception, network size, honeypot 

proportions, probing action costs, the complexity of cyber-

attacks, etc. (Aggarwal et al., 2017; Katakwar et al., 2020). 

Aggarwal et al. (2017) evaluated the impact of timing and 

amount of deception on adversarial decisions and revealed 



that late deception increased the proportion of honeypot 

attacks when compared to early deception. Similarly, 

Katakwar et al. (2020) investigated the effect of various 

network sizes on adversarial decisions in cyberspace. In 

addition, these researchers have also built computational 

cognitive models that helped them understand the various 

cognitive elements that play a vital role in influencing 

adversarial decisions in cyber scenarios (Katakwar et al., in 

press).  

Recently, Katakwar et al. (2022) have evaluated the effect 

of probing action costs on adversarial decisions in a 

deception-based security game experimentally. They found 

that cost of probing had no effect on probe and attack actions 

and that there was a significant interaction between different 

cost conditions and regular webserver probe actions over the 

trials. However, they did not look into different cognitive 

parameters that drive the adversarial decisions in complex 

cyber circumstances. Building cognitive models based on 

Instance-based Learning Theory (IBLT) is one approach to 

comprehending cognitive factors in dynamic situations (Dutt 

& Gonzalez, 2012; Gonzalez et al., 2003; Gonzalez & Dutt, 

2011). Previously, IBLT-based cognitive models were able 

to explain how adversaries made decisions in different cyber 

scenarios (Aggarwal et al., 2017; Dutt et al., 2013). Hence, in 

this research, we address the research gap by building 

cognitive models based on IBLT that could account for 

adversarial decisions in cyber situations with different 

probing costs.  

In what follows, we first briefly discuss the working of the 

Deception Game (DG). Next, we describe the findings of 

Katakwar et al. (2022). Thereafter, we detail the background 

of IBLT, and thereafter we present the results and 

conclusions of the developed cognitive models. 

Deception Game 

DG is a sequential, single-player, incomplete information 

game in which an adversary and a network compete against 

each other (Aggarwal et al., 2016a, 2016b; Garg & Grosu, 

2007). The game is formally defined as DG (n, k, γ), where n 

denotes the total number of webservers, k denotes the number 

of honeypots, and γ denotes the number of probes after which 

the adversary makes his final decision to attack the network. 

The DG has two types of webservers: regular and honeypot. 

Regular webservers are the real webservers that contain 

valuable information, whereas honeypots are fake servers 

that pretend to be real in order to trap opponents and extract 

meaningful information. 

The game is played over multiple rounds. There are two 

phases in each round of the game: probe stage and attack 

stage. An adversary could probe webservers several times 

during the probe stage. Probing implies clicking on the button 

in the game's UI that represents a webserver. For each probe, 

the adversary receives a response from the system indicating 

whether the system is a regular (real) webserver or a 

honeypot (fake) webserver. Depending on whether or not the 

deception is present, this feedback may or may not be correct. 

As a result, the adversary may not be able to learn across 

multiple rounds in this scenario. Furthermore, the game 

dynamics may closely resemble those in the real world, in 

which adversaries may have limited knowledge of the 

infrastructure they are attempting to attack. Overall, the goal 

of deception is to deceive the opponent into believing 

misleading information about the state of the servers. If 

deception is present in a round, the network response is the 

total opposite of the webservers' actual state. If there is no 

deception in a round, the network's response will be identical 

to the true state of webservers. The adversary also has the 

option of not probing any webservers during the probe stage. 

Deception and unreliability in the feedback of the probe stage 

may increase not-attack activities, as the adversary will likely 

avoid regular/honeypot attack actions due to the probe stage's 

response. 

We had three different variants of DG in this experiment: 

increasing-cost, no-cost, and constant-cost. In the increasing-

cost condition, the cost of probing the honeypot webserver 

grew linearly as the round progressed. If the adversary probed 

the honeypot webserver for the ith time in a given round, the 

adversary received -5*i points. In the no-cost condition, there 

were no penalties for probing the honeypot webservers across 

all rounds of the DG. In the constant-cost condition, the cost 

of probing the honeypot webservers was kept constant over 

the rounds. As a result, the attacker received -5 points for 

each probe of the honeypot webserver. Across all the 

conditions, there were constant cost to probe the regular 

webserver in DG. 

Experiment 

Experiment Design 

Katakwar et al. (2022) randomly allocated participants to one 

of three between-subjects conditions: no-cost probe (40 

participants), constant-cost probe (40 participants), and 

increasing-cost probe (40 participants). There were four 

webservers in the network under all conditions, two of which 

were regular webservers and the other two were honeypots. 

In addition, there were 29 trials, 14 of which were non-

deception rounds, and the rest were deception rounds. The 

participants were informed about the presence of deception 

in a DG, but they did not know which round belonged to the 

deception/non-deception condition. Also, the deception and 

non-deception rounds in DG did not form a particular 

sequence or pattern that participants could predict. Across the 

conditions, the adversary probes multiple times before 

moving to the attack stage, where he/she makes the decision 

to attack one of these webservers present in the network. For 

all the conditions, there were six dependent variables, three 

for the probe decisions and three for the attack decisions. In 

addition, we grouped the 29 trials into blocks of 5 trials each 

to see the effect of varied cost conditions on probe and attack 

decisions over the trials. As a result, the 29 trials were divided 

into 6 blocks, with the first block including 5 trials and the 

last block containing 4 trials. After that, for each block, the 

proportions of regular webserver probe/attack, honeypot 



webserver probe/attack, and no webserver probe/attack were 

determined. 

Participants 

Katakwar et al. (2022) recruited 120 participants 

anonymously recruited from the crowd-sourcing platform 

called Amazon Mechanical Turk (Mason & Suri, 2012). 

Sixty-six percent of participants were male, whereas the 

remaining thirty-four percent were female. More than ninety-

four percent of the participants had a college degree. Seventy-

four percent of the participants were from the fields of 

Science, Technology, Engineering, and Management 

(STEM) background. Once the study was over, participants 

were thanked and compensated INR 50 (USD 0.72) for their 

participation in the study. In addition, the top-three scorers 

were randomly chosen for the lucky draw contest, with one 

of them winning a gift card. 

Procedure 

Participants in the study were provided information about 

their roles and goals in the DG. Participants were also given 

information about their tasks and the associated payoffs. Over 

the course of numerous rounds of DG, participants were 

asked to maximize their payoff. The presence of deception 

and non-deception rounds in DG was communicated to 

participants by text instructions, but they were unaware of 

which rounds involved deception or non-deception. In 

addition, the configuration of regular and honeypot 

webservers was randomized in each round so that the 

percentage of regular and honeypot webservers remained 

consistent with the conditions. There were two phases to each 

round of DG: probe and attack. During the probe phase, the 

adversary may or may not probe a few webservers present in 

the network. Similarly, during the attack phase, the adversary 

had the option of attacking one of the webservers or none of 

them. Participants were thanked and compensated for their 

participation once the study was completed. 

Results 

Influence of different probe costs on adversarial 

decisions during probe and attack stages 

Katakwar et al. (2022) investigated the impact of the different 

probing action costs on adversarial decisions during the probe 

stage. They found that proportion of different probe decisions 

were insignificant across different cost conditions. The 

proportion of regular webserver probe decisions in the 

increasing-cost condition, no-cost condition, and constant-

cost condition were 0.44, 0.47, and 0.45, respectively (F (2, 

117) = 0.919, p = .402, η2 = 0.015). Similarly, the proportion 

of honeypot webserver probe decisions in increasing-cost 

condition, no-cost condition, and constant-cost condition 

were 0.43, 0.47, and 0.43, respectively (F (2, 117) = 1.454, p 

= .238, η2 = 0.020). The proportion of no webserver probe 

decisions in increasing-cost condition, no-cost condition, and 

constant-cost condition were 0.13, 0.06, and 0.12, 

respectively (F (2, 117) = 1.359, p = .261, η2 = 0.024). 

Similarly, they also investigated the effect of the different 

probing action costs on adversarial decisions during the 

attack stage. The proportion of different attack decisions were 

insignificant across different cost conditions. The proportion 

of regular webserver attack decisions in increasing-cost 

condition, no-cost condition, and constant-cost condition 

were 0.42, 0.45, and 0.42, respectively (F (2, 117) = 0.606, p 

= .547, η2 = 0.010). The proportion of honeypot webserver 

attack decisions in increasing-cost condition, no-cost 

condition, and constant-cost condition were 0.40, 0.44, and 

0.43, respectively (F (2, 117) = 1.454, p = .238, η2 = 0.024). 

The proportion of no webserver attack decisions in 

increasing-cost condition, no-cost condition, and constant-

cost condition were 0.18, 0.11, and 0.14, respectively (F (2, 

117) = 1.359, p = .261, η2 = 0.023). 

Influence of different cost conditions over the trials 

on adversarial decisions during probe stage  

 Katakwar et al. (2022) investigated the effect of probe 

decisions over the trials as a within-subject factor and 

different probing cost conditions as a between-subject factor. 

Figure 1 shows the proportion of regular probes over blocks 

of trials in different cost conditions. As shown in Figure 1, 

they also found that there was a significant interaction 

between different cost conditions and blocks (F (10, 585) = 

2.052, p < .05, η2 = 0.034). Also, averaged over all conditions, 

the proportions of regular probe decisions over the blocks 

were significant and decreasing (F (5, 585) = 2.529, p < .05, 

η2 = 0.021).  

Figure 1. Proportion of regular webserver probes over the blocks 

of trials across different cost conditions. 

However, the proportion of honeypot webserver probes were 

not significant over blocks (F (5, 585) = 1.662, p = .142, η2 = 

0.014). Also, the interaction between honeypot webserver 

probes and different cost conditions was not significant (F 

(10, 585) = 1.667, p = .085, η2 = 0.028). Similarly, the 

proportion of no webserver probe decisions were not 

significant over blocks (F (5, 585) = 1.348, p = .243, η2 = 

0.011). Also, the interaction between different cost 

conditions and the no webserver probe decisions were found 

to be insignificant (F (10, 585) = 1.171, p = .307, η2 = 0.020). 
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Influence of different cost conditions over the trials 

on adversarial decisions during attack stage  

Katakwar et al. (2022) investigated the effect of different cost 
conditions over the trials on adversarial decisions in the attack 
stage. They found that there was not any significant 
interaction between different cost conditions and the 
following proportions of attack decisions over blocks: regular 
webserver attack (F (10, 585) = 0.579, p = .832, η2 = 0.010), 
honeypot webserver attack (F (10, 585) = 0.664, p = .758, η2 
= 0.011) and no webserver attack (F (10, 585) = 1.422, p = 
.166, η2 = 0.024). Also, the proportion of decisions over 
blocks was not significant for these decisions: regular 
webserver attack (F (5, 585) = 0.111, p = .990, η2 = 0.001), 
honeypot webserver attack (F (5, 585) = 0.936, p = .457, η2 = 
0.008), and no webserver attack (F (5, 585) = 1.854, p = .100, 
η2 = 0.016). 

IBL Model 

IBLT is a decision-making theory for complicated 

circumstances based on experience (Dutt & Gonzalez, 2012; 

Gonzalez et al., 2003; Gonzalez & Dutt, 2011). Prior research 

in computational modeling using cognitive theories such as 

IBLT has shown to be effective in forecasting human 

behaviour in complex situations. The instances are built in the 

memory for each occurrence of an outcome on choice options 

in an IBL model. In the model, an instance has the triplet 

frame situation-decision-utility. The circumstance in the 

instance represents the current situation, the decision 

represents the decision made in the current situation (option 

of one of the alternatives), and utility represents the outcome 

achieved from the decision made in the current situation. 

When a decision must be made, the instances of each 

alternative are retrieved from memory. These occurrences are 

then blended together for each choice. The activation of 

occurrences, as well as their likelihood of being recalled from 

memory, are used thereafter for calculating the blended value 

of an option.                                      

𝑉𝑗,𝑡 = ∑𝑝𝑖,𝑗,𝑡

𝑛

𝑖=1

𝑥𝑖,𝑗,𝑡 

where pi,j,t is the likelihood of recalling an instance i for an 
option j in the tth trial of the experiment, and xi,j,t is the utility 
value of an instance i for an option j in the trial t. In each trial, 
the model chooses the option with the highest blended value. 
The blended value for each option is generated using the 
above equation, which is the summation of all observed 
outcomes weighted by the retrieval probability. The retrieval 
probability of the instances is described as follows: 

𝑝𝑖,𝑗 =
𝑒
𝐴𝑖,𝑗,𝑡
𝜏

∑ 𝑒
𝐴𝑖,𝑗,𝑡
𝜏𝑛

𝑖=1

 

where Ai,j,t is the activation value of an instance i 
corresponding to the memory choice j; τ is the random noise 
parameter, which is specified as τ = σ * 2; and σ is the free 
cognitive noise parameter to represent the uncertainty of 
recalling prior experiences from the memory. In a given trial, 
the activation value of an instance is determined by the 

frequency with which its outcome happens and the time 
difference between the current time and the previous time 
when the instance's outcome occurred in the task. The 
activation value of a given instance i is defined for each trial t 
as follows: 

𝐴𝑖 = ln( ∑ (𝑡 − 𝑡𝑝,𝑖)
−𝑑 ) + 𝜎 ∗ ln(

1 − 𝛾𝑖,𝑡
𝛾𝑖,𝑡

)

𝑡𝑝,𝑖∈{1,…,𝑡−1}

 

where, d and σ are the hyperparameters known as memory 
decay and cognitive noise respectively; t is the current trial; tp,i 
are the prior trials in which outcome with instance i occurred 
in the task; and γi,t is the random number chosen from the 
uniform distribution between 0 and 1. So, the frequency of 
occurrence of outcomes in the task and the recency of those 
outcome observations increase the activation of an instance 
corresponding to the observed outcome. The decay parameter 
d takes into consideration reliance on current information. The 
greater the reliance on recency and the faster memory decay, 
the higher the value of the d parameter. The σ parameter 
compensates for variation in instance activation from sample 
to sample. The greater the value, the higher variability in 
instance activations and trial-to-trial decisions. 

Parameter Calibration  

We built two different variants of the IBL model. The first 

variant of the IBL model had calibrated parameters of d and 

σ, which was referred to as IBL-calibrated model. However, 

the second variant of the model had default ACT-R 

parameters of d and σ as 0.50 and 0.25 respectively, referred 

as IBL-ACT-R model. Using experimental data of different 

cost conditions, we found the optimal values of d and σ for 

IBL-calibrated model. For both the variants of IBL-based 

model, 120 model agents were used across different trials. 

Across the 29 trials, we tried to minimize the average of 

Mean Squared Deviations (MSD) on the proportion of attack 

and not-attack decisions made by humans and models. 

𝑀𝑆𝐷 =
1

29
∑(𝑚𝑜𝑑𝑒𝑙𝑡 − ℎ𝑢𝑚𝑎𝑛𝑡)

29

𝑡=1

 

where, t depicts trial from 1 to 29; modelt and humant refers 

to the attack decisions in the trial t from model and human 

participants, respectively. So, if the MSD value is minimal, 

the model's fit to human data is better. To maximize the 

values of d and σ parameters for both model participants, the 

Genetic Algorithm (GA), an optimization algorithm, was 

utilized. In the genetic algorithm, the utility value for the 

regular webserver, honeypot webserver, and no probe/attack 

varied from -100 to 100, whereas the d and σ parameters 

varied from 0 to 10.  

The IBL-ACT-R model is based upon ACT-R framework, 

a cognitive theory that has been used to explain a variety of 

cognitive science findings (Anderson et al., 1997). ACT-R is 

a cognitive architecture designed to account for the various 

complex operations of the human mind. In the IBL-ACT-R 

model, we have d and σ parameters, which were set based on 

the ACT-R default values of 0.50 and 0.25, respectively. 

Smaller values of d suggest that information is less reliant on 



frequency and recency, and smaller values of σ indicate that 

trial-to-trial decisions are less variable. We compared the 

performance of IBL-ACT-R and IBL-calibrated models. 

Model Results  

Table 1 shows the values of model parameters and MSD 

between human and model for different conditions of both 

models. The d and σ are the free parameters of the models 

where d parameter denotes the memory decay and σ denotes 

the variability in trial-to-trial decisions. In the IBL-calibrated 

model, d value was smaller for cost-associated conditions i.e., 

constant cost (d = 1.21) and increasing cost (d = 1.56) and 

higher for no-cost condition (d = 8.50). Similarly, σ value was 

higher for the cost-associated conditions i.e., constant cost (σ 

= 8.89) and increasing cost (σ = 7.67), and lower for no cost 

(σ = 0.56). The MSD value for the attack and not attack 

actions of the IBL-ACT-R model across all the conditions 

were higher compared to the total MSD value of the 

calibrated model. Figure 2 shows the proportion of different 

attack and not attack decisions over the blocks of trials in 

increasing cost conditions in human data, IBL-calibrated 

model, and IBL-ACT-R model. Figure 3 shows the 

proportion of different attack and not attack decisions over 

the blocks of trials in constant cost condition in human data, 

IBL-calibrated model, and IBL-ACT-R model. Figure 4 

shows the proportion of different attack and not attack 

decisions over the trials in no cost condition in human data, 

IBL-calibrated model, and IBL-ACT-R model. 

  
Figure 2. Proportion of different attack and not attack decisions 

over the blocks of trials in increasing cost conditions in human, 

IBL-calibrated model, and IBL-ACT-R model. 

 

Figure 3. Proportion of different attack and not attack decisions 

over the blocks of trials in constant cost condition in human data, 

IBL-calibrated model, and IBL-ACT-R model.  
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Figure 4. Proportion of different attack and not attack decisions 

over the trials in no cost condition in human data, IBL-calibrated 

model, and IBL-ACT-R model.  
 

Discussion 

Deception using honeypot has been demonstrated to be an 

important approach for combating modern cyber-attacks 

(Almeshekah & Spafford, 2016). Researchers in the field of 

adversarial cybersecurity have created and deployed 

canonical games to investigate the effectiveness of deception 

in various cybersecurity scenarios (Aggarwal et al., 2016a; 

2016b). In addition, researchers have examined the many 

human factors that influence the adversary's decision in 

deception-based security games (Aggarwal et al., 2016a; 

Katakwar et al., 2020). Recently, Katakwar et al. (2022) has 

evaluated the effects of probing action costs in a deception-

based game. However, they did not try to understand different 

cognitive factors involved in adversarial decisions in this 

cyber situation. 

The findings of Katakwar et al. (2022) revealed that the 

varying costs of probing actions had no effect on adversarial 

decisions made during the attack phase in DG. However, 

there was a significant effect of regular probe decisions over 

the blocks of trials in DG. The results also indicated that both 

constant-cost and increasing-cost conditions, the proportion 

of regular probing decisions followed a consistent pattern 

over rounds. Furthermore, the proportion of regular probe 

decisions decreased across the blocks of trials. According to 

IBL theory, humans choose the alternatives that maximize 

their overall values. When there is a cost connected for 

probing honeypot webserver, the adversary suffers negative 

consequences. This negative experience reduces the 

combined value of the honeypot probe/attack decision. In 

contrast, the attacker suffers no negative consequences when 

probing/attacking a webserver in the no-cost probe. As a 

result, we see a significant effect of different cost conditions 

on regular probe decisions in DG over the trials. Also, there 

was no influence of different cost conditions on the 

adversarial decision-making during the attack phase. As the 

attack phase followed the probe phase and the cost was 

associated with probing. Thus, the proportion of actions 

during the attack phase across different cost conditions were 

similar. 

The cognitive models' results revealed that the no-cost 

condition had a higher memory decay value (d = 8.50) than 

the cost-associated conditions. As in the no-cost condition, 

the adversaries had no negative experience, which made them 

more reliant on the DG's feedback. As a result, the memory 

decay value for the no cost condition is much higher than that 

for the cost-associated situations. Furthermore, the model 

revealed a high cognitive noise value for cost-associated 

conditions (σ = 8.89 for constant cost and σ = 7.67 for 

increasing cost). One explanation for this result is that 

increasing the cost of probing the honeypot webserver 

increases the adversary's negative experience. This negative 

experience along with the presence of deception baffled the 

adversary, prompting the adversary to probe fewer regular 

webservers. 

We also found pre-populated utility values for regular 

webserver action, honeypot webserver action, and no 

webserver action for the various cost conditions via 

calibration. The pre-populated utility value for regular 

webserver action and no action for the no-cost condition was 

quite high in comparison to cost-associated conditions. 

Furthermore, the pre-populated utility value for honeypot 

webserver action for cost-associated conditions was negative 

as compared to the no-cost condition. The reasons behind 

both outcomes can be understood with the aid of IBLT. In the 

no-cost condition, the adversary does not receive any 

negative feedback, making instances of gains more active 

than instances of losses. As a result, adversaries have a 

positive opinion about the honeypot webserver. Furthermore, 

in the no-cost condition, the adversary only received positive 

rewards for probing/attacking webservers, resulting in a 

positive opinion about webservers. Thus, the utility values for 

regular webserver action and no webserver action in the no-

cost condition were higher than in cost-associated conditions. 

However, in cost-associated conditions, as the adversaries 

have some negative experiences, this leads to a negative 

perception of honeypot webservers among the adversaries. 

One drawback of this study is that the results are based on 

a lab-based study. As a result, some of the findings might not 

be applicable in the real-world settings. In addition, the 

adversaries in this investigation were unaware of deception 

rounds and the actual identities of webservers, which could 

have influenced their decisions during the probe and attack 

stages. One practical implication of this research in the real-

world is that the cognitive models derived from this research 

could be used to build decision support system for 

organizations, which may assist inexperienced defenders and 

analysts to make decisions in cyber environments. Also, the 

models can be utilized for performing penetration testing in 

different cyber settings to determine exploitable 

vulnerabilities. 

In the future, we intend to investigate how various 

deception and non-deception patterns might be used to 

deceive the enemy from the genuine target in a cyber 

environment. Furthermore, because of the complicated cyber 
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environment, it is quite expected that adversaries will exhibit 

various cognitive biases; hence, we plan to investigate the 

presence of cognitive biases in cyber settings. These are some 

ideas that we intend to study in our future research. 
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