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Abstract 
We propose Minerva-Q, a multiple-trace memory model 
capable of perceptual-motor reinforcement learning. This 
model combines Q-learning with the Minerva family of 
memory models. In our simulations we found our Minerva-Q 
agent learned increasingly optimal solutions to the Cart Pole 
task and reproduced human-like performance when presented 
with minimal expert training examples in a sparse reward task.  

Keywords: Minerva; reinforcement learning; memory; 
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Introduction 
Perceptual-motor learning can be observed in the behaviours 
of many animal species and may be responsible for the 
development of embodied skills including tool use, spatial 
navigation, hunting and foraging, or in humans, skills such as 
riding a bicycle or playing an instrument. Learning more 
broadly is known to require some form of memory and entails 
adaptive processes to reinforce, inhibit, or alter information 
stored in memory. We may thus posit a minimal perceptual-
motor learning agent as consisting of a set of adaptive 
learning and action-selection processes and a set of sensory 
inputs and motor outputs connected to a memory store. In the 
fields of cognitive science, artificial intelligence, and 
robotics, we hold that it is useful to consider and study such 
minimal configurations, as most living organisms do not 
possess the “higher” cognitive skills of humans such as those 
related to semantic reasoning, yet non-human organisms are 
capable of completing tasks our best models and intelligent 
systems are either incapable of handling at present or may 
require many orders of magnitude more computational 
resources to perform. Moreover, human motor learning may 
be more akin to this type of system. 

Towards this end, we propose Minerva-Q, a minimal 
memory model capable of perceptual-motor skill acquisition 
via an implementation of Q-learning (Watkins, 1989), which 
is a form of temporal-difference (TD) learning algorithm 
motivated by classical conditioning theories of animal skill 
acquisition. “Minerva” in Minerva-Q refers to a family of 
multiple-trace memory models largely based on MINERVA 
2 (Hintzman 1984; Hintzman, 1986), which have been used 
to model associative learning (Jamieson et al., 2012) and 
decision-making (Dougherty et al., 1999), among a large set 
of other cognitive processes (see Jamieson et al., 2022). 
Given the versatility of Minerva models, we hypothesized 
that a Minerva-like model of perceptual-motor memory could 
be applied to the domain of reinforcement learning (RL). We 
found that our Minerva-Q RL agent could solve a dense-

reward and a sparse-reward RL task and observed its human-
like capacity to learn from a minimal number of expert 
examples. This latter feature sets Minerva-Q apart from 
models like the so-called “deep Q-network” (Mnih et al., 
2015) that may require hundreds of training examples (or 
more) to reproduce expert task performance.  

In this paper, we first describe the specifications of the 
Minerva family of memory models that set precedence for 
Minerva-Q. Next, we provide a detailed account of the 
structure and mechanisms of Minerva-Q. Finally, we outline 
the results of a Minerva-Q agent in two simulated RL tasks 
and discuss the wider implications of our model to the 
cognitive sciences. 

MINERVA 2 
In MINERVA 2, each experience is stored as a separate 

item in memory, known as a memory trace (hence, multiple-
trace memory). More specifically, MINERVA 2 consists of 
two memory subsystems: primary memory (PM), which is a 
limited temporary memory store analogous to working 
memory, and a long-term secondary memory (SM) 
containing all memory traces. Information that passes into 
PM is sent to SM as a “probe,” which returns a single “echo” 
to PM. This echo represents a retrieved memory instance and 
is constructed during each retrieval as the sum of activated 
traces. Thus, retrieval cannot be understood as a lookup 
process, and the addition of identical traces to SM has the 
effect of strengthening the influence of these traces during 
activation.  

Memory traces in MINERVA 2 are represented as integer-
valued vectors with random values v ∈ {−1,0,1}. These 
traces are stored in an 𝑚𝑚 × 𝑛𝑛 matrix 𝑀𝑀, where 𝑚𝑚 is the 
number of memory traces and 𝑛𝑛 is the number of values in 
each trace. In MINERVA 2, the similarity 𝑠𝑠 between a probe 
𝑝𝑝 and a memory trace is computed as a normalized dot 
product, 
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where 𝑛𝑛R is the maximum number of nonzero values in the 
probe or memory trace 𝑀𝑀𝑖𝑖. This similarity metric is cubed to 
increase the signal-to-noise ratio in the echo, producing an 
activation vector 𝑎𝑎 of the trace given the probe: 
 

𝑎𝑎i = 𝑠𝑠i3 (2) 
 



Finally, the echo 𝑐𝑐 may be computed as the sum of activated 
traces:  
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Learning in MINERVA 2 is probabilistic, where each 

nonzero feature in the probe is added to memory with 
probability 𝐿𝐿. Forgetting is treated as the opposite of learning, 
where each nonzero feature has a probability 𝐹𝐹 of being set 
to 0. According to Hintzman (1986), learning with 𝐿𝐿 =
0.25 is equivalent to learning with 𝐿𝐿 = 1.00 and forgetting 
with 𝐹𝐹 = 0.75. 

MINERVA 2 Variants 
Variants of MINERVA 2 typically commit to Hintzman’s 

(1984; 1986) assumptions but may propose different 
functions with respect to encoding, activation, learning, and 
forgetting to model their targeted phenomena. For example, 
Jamieson et al. (2018) offer a Minerva variant that combines 
the retrieval operations of MINERVA 2 with the encoding 
scheme of BEAGLE (Jones & Mewhort, 2007), and compute 
activation under a cosine similarity function. Likewise, 
Collins et al. (2020) formalize a probabilistic learning 
mechanism that prioritizes surprise, conceptually grounded 
in the discrepancy encoding of Jamieson et al. (2012). 

These examples set precedence for many of the 
formalizations developed for Minerva-Q, which we argue 
should be considered a Minerva-like model as it retains the 
core operations of MINERVA 2 but departs somewhat from 
Hintzman’s (1984) theoretical assumptions about memory.  

Minerva-Q 

Q-Learning 
Minerva-Q implements Q-learning (Watkins, 1989) to 

handle perceptual-motor tasks. Q-learning is a model-free 
reinforcement learning method. More formally, Q-learning, 
when implemented in a table of Q-values, converges on an 
optimal action-selection policy for finite, discrete-time 
Markov decision processes (Watkins & Dayan, 1992). At 
each time step 𝑡𝑡, a Q-learning agent has the task of selecting 
some action 𝐴𝐴𝑡𝑡 ∈ 𝐴𝐴 given some state 𝑆𝑆𝑡𝑡 ∈ 𝑆𝑆, where 𝑆𝑆 is a 
finite set of discrete states and 𝐴𝐴 is a finite set of discrete 
actions. After taking said action, the agent receives a reward 
𝑟𝑟, which is used to update its policy according to the formula, 

 
𝑄𝑄new(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡) ← (1 − α)𝑄𝑄(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)
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where 𝑄𝑄(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡) (the Q-value) is the expected discounted 
reward for selecting action 𝐴𝐴𝑡𝑡 given state 𝑆𝑆𝑡𝑡 under the current 
policy, γ is a discount factor that evaluates rewards received 
earlier as higher than those received later (if γ < 1) by a 

factor of γ𝑡𝑡, and α is a learning rate which adjusts the impact 
of Q-value updates at each time step. 

Retrieval 
At each time step during a task, a state vector is passed into 

Minerva-Q’s PM which is then encoded into a probe for echo 
retrieval from SM. Memory traces in SM are a concatenation 
of a state vector and 𝑛𝑛𝐴𝐴 Q-values (the “action vector”), where 
𝑛𝑛𝐴𝐴 is the number of discrete actions the Minerva-Q agent can 
perform during the task. SM in Minerva-Q is thus represented 
as an 𝑚𝑚 × (𝑛𝑛𝑆𝑆 + 𝑛𝑛𝐴𝐴) matrix 𝑀𝑀, where 𝑚𝑚 is the number of 
stored traces and 𝑛𝑛𝑆𝑆 is the dimension of the encoded probe 𝑝𝑝.  

Minerva-Q differs from other Minerva models in that the 
dimension of its probes is not equal to the dimension of its 
traces. This is handled by activating only the part of each 
trace vector corresponding to the probe, where the activation 
vector 𝑎𝑎 is computed under a cubed cosine similarity 
function: 
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We may justify this decision with the reasoning that Q-

values do not exist as objects in the environment, rather they 
are internal representations of the expected values of 
particular actions and therefore should not be considered in 
similarity measures between stored memory traces and what 
the agent is experiencing (or observing). Under this 
interpretation, we see the probe as fundamentally tied to 
perception, or more specifically to the observation and 
transduction of a state vector, and activation as an associative 
memory process, the latter position informed by Hintzman 
(1990). It may therefore be more helpful to understand the 
stored Q-values in the action vector as metadata attached to 
an observed state that influences action-selection rather than 
playing a role in associative perceptual memory processes. 
Further, we note precedence for this kind of partial activation 
in other Minerva models (e.g., Johns et al., 2016). 

Given this interpretation, trace activation in Minerva-Q 
still must be understood as influencing all information in a 
stored memory trace, thus the retrieved echo vector 𝑐𝑐 has a 
dimension of 𝑛𝑛𝑆𝑆 + 𝑛𝑛𝐴𝐴, and is computed like in MINERVA 2: 
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Perceptual-Motor Learning 
A Minerva-Q agent learns as follows. First, an initial state 

observation is passed into PM and copied into the bottom slot 
of a Q-buffer, which is a matrix 𝐵𝐵 with a dimension of 
2 × (𝑛𝑛𝑆𝑆 + 𝑛𝑛𝐴𝐴) and is initialized to all zeros. For the sake of 
clarity, we refer to the first row of 𝐵𝐵 as its top slot and the 
second row as its bottom slot. Note that since the observation 



probe has a dimension of 𝑛𝑛𝑆𝑆, the latter 𝑛𝑛𝐴𝐴 dimensions of the 
top slot are left unchanged. Then, the probe is used to retrieve 
an echo (all zeros if memory is empty) from SM and the latter 
𝑛𝑛𝐴𝐴 values (the Q-values, or action vector) from the echo are 
copied into the latter 𝑛𝑛𝐴𝐴 values of 𝐵𝐵’s bottom slot. 

Next, the Minerva-Q agent is tasked with selecting an 
action. Here we leave the particulars up to modelers, as 
various heuristics may be implemented across different tasks 
to balance between exploration of an environment and 
exploitation of the learned policy (see Amin et al., 2021). 
However, in our simulations we used a decaying 𝜖𝜖-greedy 
heuristic which selects actions according to a random 
uniformly distributed variable 𝑥𝑥 ∈ [0,1] and a variable 𝜖𝜖 ∈
[0,1]. At each time step 𝑡𝑡, 𝑥𝑥 is randomly chosen and an action 
𝐴𝐴𝑡𝑡  is selected according to the strategy, 
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(7) 

 
where the function maxarg returns the index of the maximum 
value of the action vector, and the function randarg returns a 
random index of the action vector. Then, 𝜖𝜖 decays at each 
time step by some fixed amount until it reaches a 
predetermined minimum value. 

Before performing the selected action, the contents of 𝐵𝐵’s 
bottom slot are copied to its top slot. After performing the 
action at time 𝑡𝑡, the Minerva-Q agent receives a reward and 
observes a new state which is then copied to 𝐵𝐵’s bottom slot 
and used to probe memory to retrieve an echo 𝑐𝑐𝑡𝑡+1. As before, 
the action vector portion from 𝑐𝑐𝑡𝑡+1 is copied into 𝐵𝐵’s bottom 
slot. 

At this point, having performed its first action and received 
a reward 𝑟𝑟, the Minerva-Q agent can update the Q-value in 
𝐵𝐵’s top slot corresponding to 𝐴𝐴𝑡𝑡 using the formula, 

 
𝐵𝐵1,𝑛𝑛𝑆𝑆+𝐴𝐴𝑡𝑡 ← (1 − 𝛼𝛼)𝐵𝐵1,𝑛𝑛𝑆𝑆+𝐴𝐴𝑡𝑡
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where 𝛼𝛼 and 𝛾𝛾 represent the same parameters as in equation 
(4). Next, the action vector in 𝐵𝐵’s top slot is normalized to 
promote numerical stability, then finally the agent forgets (as 
explained below), and the top slot is added as a new item to 
SM without any information loss. From here, the algorithm 
may loop from the point of action selection. 

Forgetting 
Since there is no formal mechanism by which stored 

memory traces can be updated in the Minerva framework and 
thus no obvious way to update Q-values akin to replacing 
them in a table, Minerva-Q leverages forgetting to 
probabilistically clear memory traces most similar to what is 
being added (again, considering only the first 𝑛𝑛𝑆𝑆 dimensions 
during activation) allowing for a somewhat noisy yet 
effective method of updating stored Q-values. This forgetting 
is implemented as logistic function similar to the discrepancy 

encoding function of Minerva-DE (Collins et al., 2020) but 
modified to enable targeted forgetting. Before an item is 
added to memory, each element of trace Mi (excluding those 
containing Q-values) has a probability 𝐹𝐹 of being set to 0. 
This probability is determined by the trace’s activation 𝑎𝑎𝑖𝑖 to 
the item being added according to the function, 

 

𝐹𝐹i =
1

1 + e−𝜙𝜙𝑎𝑎i+𝛽𝛽
 (9) 

where the parameters 𝜙𝜙 and 𝛽𝛽 adjust the slope and bias 
respectively. Tuning these parameters allows for 
implementations ranging from those with hard, precise 
forgetting thresholds to those with softer, more broad 
targeting to manage memory capacity, as traces containing all 
0’s in their first 𝑛𝑛𝑆𝑆 dimensions can safely be removed from 
memory.  

Trace Encoding 
As outlined, each instance stored in memory is a 

concatenation of an observation and a normalized action 
vector containing Q-values. However, due to the use of vector 
cosine as a similarity metric in Minerva-Q, observation state 
spaces with a low dimension might result in suboptimal 
learning. In the most extreme case, a task providing only a 
single floating-point number as an observation will restrict 
the similarity function to the set of possible activations: {-1, 
1}. Thus, it may be useful to process (i.e., transduce) an 
observation prior to its delivery to PM. In our simulations, 
observations are expanded such that each constituent 
floating-point value is represented as a bit vector with a 
dimension of 𝑏𝑏 − 1, where 𝑏𝑏 is the value’s number of bits of 
precision (more accurately, the width of its exponent plus the 
width of its mantissa). The value’s sign bit is not included in 
this expansion but is used to populate the delivered probe 
vector with either 1’s and 0’s or -1’s and 0’s. This preserves 
the semantics of the similarity metric (i.e., 𝑥𝑥 and −𝑥𝑥 will have 
a similarity of -1.0). Thus, the dimension of each trace in 
memory in our simulations is (𝑏𝑏 − 1) × 𝑛𝑛𝑆𝑆 + 𝑛𝑛𝐴𝐴.  

This encoding method, though effective in our simulations, 
is likely suboptimal, as our similarity function is not sensitive 
to magnitude. For example, the similarity between 3.14 and 
3.15 in our implementation is 0.58, whereas the similarity 
between 3.14 and 1.268x10-308 is 0.60. Intuitively, we might 
expect numbers closer together to be more similar to each 
other than to numbers that differ by many orders of 
magnitude. We encourage future research to develop 
different representational schemes and/or similarity functions 
that improve our approach and preserve this expectation. A 
possible approach for future investigation may involve the 
use of fractional binding to represent continuous spaces (e.g., 
Komer et al., 2019). 

Simulations 
For our simulations, we implemented Minerva-Q in Python 

3.10.2 using PyTorch (Paszke, et al., 2019). We chose the 
OpenAI Gym library (Brockman et al., 2016) environments 



CartPole-v1 (Cart Pole) and MountainCar-v0 (Mountain 
Car) to simulate our tasks. Notably, OpenAI Gym has been 
designed specifically for reinforcement learning and is used 
across the artificial intelligence community as a 
benchmarking tool.  

To improve learning, after each trial (or episode) we 
compared the agent’s results to previous trials and if we 
found no significant improvement, cleared its memory up to 
the last best trial (or to the last trial better than some minimum 
performance threshold). Though this procedure is not 
mandatory for Minerva-Q to learn satisficing strategies, we 
decided to include it to demonstrate the potential of using 
Minerva-Q to rapidly optimize a strategy. We conjecture 
based on our limited tests that given enough time, Minerva-
Q will tend towards increasingly optimal solutions, however 
this notion requires further corroboration and testing. As 
precedence, a conceptually similar approach is taken in 
instance-based cognitive models (see e.g., Gonzalez et al., 
2003). Under this frame, our approach may be understood as 
setting the activation or utility of the memory chunks stored 
during a suboptimal trial to 0. 

Cart Pole Task 
The Cart Pole (also known as inverted pendulum) task is a 

classic control problem that requires an agent controlling a 
cart to keep upright a pole attached to a joint fixed to the 
cart’s center. In this environment, a reward of 1 is given at 
each time step. The task terminates if the pole falls past 12 
degrees in either direction, when the cart moves past a certain 
position in either direction, or when the agent reaches the 
maximum of 500 steps. At each time step, the agent observes 
the cart position, cart velocity, the pole’s angle, and its 
angular velocity, and must choose between one of two 
discrete actions: pushing the cart either left or right. 

For this task, we set 𝜙𝜙 to 11, and 𝛽𝛽 to 8 in our forgetting 
function, informed by the parameters used in the Minerva-DE 
(Collins et al., 2020) simulations. We set 𝛼𝛼 to 0.8 and 𝛾𝛾 to 
0.99 in our Q function to promote a long-term time-horizon.  

At each trial 1, the Minerva-Q agent has zero knowledge 
of the task stored in memory, and chooses actions based on a 
decaying 𝜖𝜖-greedy policy. Figure 1 shows our results after 
200 trials, averaged over 50 sets of trials; 𝜖𝜖 values are shown 
in red, beginning at 0.99 and decaying to a minimum of 0.02.  

Though our results do not show the agent achieving a 
maximum score of 500, we see the number of steps taken 
before the task terminates increasing as 𝜖𝜖 decays, continuing 
in a clear upward trend toward trial 200, demonstrating 
learning.  

Mountain Car Task 
The Mountain Car task originally appears in Moore (1990) 

and consists of a car on curved mountain-like one-
dimensional surface, which is consistent across trials. 
Starting at a random location at the bottom of a valley, an 
agent must maneuver the car to reach a goal position at the 
 
 

 
Figure 1: Average Cart Pole results across 50 sets of 200 
trials. Blue indicates the average number of steps per trial 
(higher is better); red indicates the average 𝜖𝜖 value per trial.  
 
mountaintop by accelerating back and forth across the valley 
until enough speed is gained to drive up a steep incline. 

At each time step, the agent receives an observation 
describing the car’s position along the x-axis and its velocity 
and must choose between three actions: accelerate to the 
right, to the left, or do nothing. Interestingly, Moore’s 
solution to this problem, like Minerva-Q, stores each 
experience in its memory, though implements a much 
different learning algorithm and overall architecture.  

In the Cart Pole task, the agent receives “dense” rewards 
(i.e., at each time step), but in the Mountain Car task is only 
rewarded once the car reaches the goal position. This is a 
subtle yet consequential distinction between the two tasks, as 
“sparse” reward paradigms like the Mountain Car task may 
necessitate more exploration of their state space to find 
rewarding solutions. 

Using our memory clearing approach therefore does not 
make much sense for tasks with sparse rewards, at least until 
a satisficing solution is found from which a policy may be 
optimized. Thus, to assess Minerva-Q’s performance on this 
task, we initialized our agent’s memory with four expert trials 
of the task, which provided enough rewarding experience to 
optimize further in unsupervised trials. 

Properly integrating this expert knowledge required a 
change of the task reward values. By default, this task 
environment returns a reward of -1 at each time step (up to a 
maximum of 200 steps, terminating the task) and a reward of 
0 upon reaching the goal position. However, since our 𝜖𝜖-
greedy selection targets the maximum Q-value, we found that 
the agent actively avoided taking the actions made by expert 
players, as the combination of sparseness and negative 
rewards disincentivized selecting these actions. To resolve 
this, we modified the rewards such that the agent received a 
maximum reward of 1 at the goal position, otherwise it would 
receive a reward of 0. This resulted in the expected behaviour 
of reproducing the expert knowledge. Thus, we may conclude 
our model exhibits human-like motor learning in its capacity 
to learn from limited examples, given an appropriate reward 
structure.  



Discussion 
Our results suggest that human-like perceptual-motor 

learning is possible to model with a minimal set of memory 
structures and functions, more specifically those of the 
Minerva family. As acknowledged, there are key differences 
in our implementation of Q-learning that necessitated an 
extension of the MINERVA 2 framework, though we hold 
that our solutions in Minerva-Q provide modest innovations 
that architectural purists are likely to find acceptable. More 
broadly, where other Minerva models were able to show 
successful empirical results for episodic and semantic 
memory tasks, we showed qualitative successes related to 
perceptual-motor memory tasks. This may have important 
theoretical implications to be explored in future works. 
However, we note some more immediate points for 
discussion. 

First, we want to address the notion of optimization, which 
at least in the cognitive sciences is less of a priority compared 
to plausible satisficing strategies. Q-learning is typically 
implemented using a table of Q-values and in this form is 
guaranteed to converge on an optimal policy (Watkins, 1989; 
Watkins & Dayan 1992). More recently, Q-learning has been 
implemented in a deep Q-network (DQN; Mnih et al., 2015) 
that achieved human-level performance on 29 Atari games. 
In DQN, an approximation of the Q-learning policy is learned 
via iterated backpropagation. In response to stability and 
divergence issues in using nonlinear function approximators 
to derive Q-values (see e.g., Baird, 1995; Tsitsiklis & Van 
Roy, 1997), DQN employs “experience replay” and a novel 
loss function claimed to mitigate problematic correlations in 
training data that result in divergence from an optimal policy, 
though these are imperfect solutions. 

There are important structural differences between 
Minerva and fully-connected artificial neural networks that 
suggest the divergence issues of DQN may not be relevant to 
Minerva-Q. According to Hintzman (1990), Minerva models 
can be understood as nonlinear localist neural networks. 
More specifically, Kelly et al. (2017) show that MINERVA 
2 is equivalent to a distributed Hebbian associative memory. 
Conversely, neural networks like DQN utilize 
backpropagation via gradient descent on distributed 
representations and are more formally understood as 
universal function approximators given a sufficient number 
of hidden layers (Hornik et al., 1989). Though powerful, this 
kind of backpropagation is prone to issues like catastrophic 
interference and is largely responsible for divergence issues 
when approximating the Q-value function (Baird, 1995; 
Tsitsiklis & Van Roy, 1997).  

Critically, Minerva-Q does not update its Q-values using 
an approximated function, rather the function is directly 
implemented to store new Q-values in memory. Despite this 
advantage over DQN, Minerva models are not equivalent to 
lookup tables, therefore we cannot assume without further 
investigation that Watkins and Dayan’s (1992) convergence 
proofs apply to Minerva-Q in its current form. Nevertheless, 
it is encouraging that Minerva-Q appears to at least satisfice, 
and its connection to other Minerva models suggest it is a 

worthwhile effort of cognitive science to study questions of 
convergence in greater depth. 

However, there appears to be, as a first approximation, an 
isomorphism between the Minerva family of memory models 
(including Minerva-Q) and the transformer class of neural 
network architectures. Specifically, we conjecture there are 
similarities between the so-called “attention” functions of 
transformer networks (see: Vaswani et al., 2017) and the 
Minerva activation and echo construction mechanisms. 
Though this notion is yet to be corroborated, if true, it may 
help ground currently state-of-the-art transformer models in 
more psychologically plausible models of memory. 

Lastly, we note that the presented Minerva-Q model is 
subject to change, as it is under active development to 
accommodate theoretical considerations, incorporate more 
cognitively plausible mechanisms, and improve 
performance. For example, the current iteration is limited to 
discrete action spaces and thus cannot handle tasks requiring 
continuous-valued inputs. Likewise, there may be more 
plausible action-selection heuristics, such as ones motivated 
by optimism or surprise.  Finally, we note that although our 
learning optimization approach (i.e., the deletion of 
suboptimal trials from memory) is not mandatory and has 
some conceptual precedence, it introduces structural changes 
that may be theoretically problematic. Thus, future iterations 
should explore solutions that achieve this behaviour in a more 
parsimonious and tenable manner. 
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