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Abstract 

Cognitive architectures have been used to model human 
problem-solving strategies and behaviours in complex 
domains – here, we focus on programming. However, to date, 
models of programming have not included various strategies 
for generating programs. To address this, the present paper 
describes two cognitive models that simulate a novice and 
expert strategy for solving a programming problem in Python. 
The models were based on theoretical frameworks of expert 
and novice programming. The SGOMS framework was best 
for modeling experts and competent novices, because it 
provided functionality to represent goals and plans that 
mirrored ones used by these individuals. 

Keywords: Python ACT-R, cognitive modelling, 
programming, expertise 

Introduction 

Programming is a complex skill that requires time and 

practice to master. To date, however, the components of this 

skill and corresponding cognitive mechanisms are not clear.  

As we describe below, one way to fill this gap involves the 

construction of a cognitive model.  

A cognitive model is a formalization of cognitive 

mechanisms that are hypothesized to impact problem solving 

and performance within a particular domain. A common 

cognitive architecture for building cognitive models is ACT-

R (Anderson & Lebiere, 1998). ACT-R uses productions 

(if/then rules) to model problem solving in a given domain, 

and declarative memory to store facts about the domain. This 

architecture has inspired other similar architectures, such as 

Python ACT-R (Stewart & West, 2007), which is used in the 

present work. Implementing a cognitive model has a number 

of benefits. It requires the human author (i.e., the model 

builder) to formally specify the declarative and procedural 

knowledge needed to solve problems in a given domain. This 

formalization step is beneficial as it clarifies the cognitive 

mechanisms (Frischkorn & Schubert, 2018). Moreover, the 

model provides an environment for testing theories about the 

hypothesized cognitive mechanisms. 

There is substantial work in the ACT-R community and 

beyond involving cognitive models for a range of tasks. In 

this review, we focus on problem-solving tasks in science 

domains. Two common domains used to implement cognitive 

models include physics and math (Braithwaite et al., 2017; 

VanLehn et al., 1991). To illustrate, the model Cascade 

formalized the mechanisms for self-explanation and 

analogical transfer used during physics problem solving 

(VanLehn et al., 1991). Another example is FARRA 

(Braithwaite et al., 2017), which is a model of fraction 

problem solving. FARRA simulations demonstrated that the 

distribution of problems in mathematics textbooks may 

inadvertently strengthen student misconceptions. Relevant to 

the present work, some researchers have formalized 

knowledge representations for program generation (Johnson 

& Soloway, 1985; Pirolli, 1986; Corbett, 2000). The focus of 

this work was to parse and/or track students’ code generation 

and provide feedback on program statements. To date, 

however, there does not exist work on implementing 

cognitive models of programming that simulate different 

strategies based on a programmer’s knowledge (novice vs. 

expert).   

The present paper takes a step towards filling this gap. 

Specifically, we identify the knowledge representations 

needed to program and embed them within computational 

ACT-R models capable of producing solutions to simple 

programming problems. Programming was chosen as the 

domain as it represents a complex problem-solving skill, with 

competing frameworks providing insight into the process 

programmers engage in while writing programs. Two models 

are implemented that simulate a novice and expert approach, 

respectively, to programming.  

Novice and Expert Programming Approaches 

 Since the models we implemented are influenced by 

theories of expertise, we begin with a brief overview of these, 

focusing on work in the programming domain. Programmers’ 

mental representations are pivotal to programming 

performance and ability. For instance, programmers find it 

easier to read and understand the output of a program when 

the language uses functions that align with the programmer’s 

underlying problem-solving strategy (Soloway et al., 1983). 

Of particular interest for the present work are studies 

investigating programming expertise (Spohrer et al., 1985; 

Soloway & Ehrlich, 1984).   

Early programming frameworks characterizing novice 

programming focused on identifying the origins of common 

bugs in novice programmers’ code. Spohrer et al. (1985) used 

a representational framework called GAP trees (Goal and 

plan networks) to parse the programs of novice programmers, 

categorize bugs, and identify the problem-dependent 

knowledge that led to bugs. The GAP framework 

decomposes a program using a solution space containing a 

program’s goals, and the set of plans that implement those 

goals (e.g., through decomposition into smaller goals and 



plans). Spohrer et al. referred to this solution space as a GAP 

tree (goal-and-plan tree). There are two types of GAP trees 

for programs: (1) inferred trees, defined as having goals with 

multiple executable plans, and (2) solution subtrees, which 

are branches in the larger inferred GAP tree linking a single 

execution plan to a goal. Students who were not able to 

correctly complete programming tasks usually had an error 

in, or the complete absence of, one or more of the GAP tree 

components. This suggests that novice errors are caused by 

missing goal(s), or by incorrect knowledge representation(s). 

Rist (1989) also studied novices, by analyzing the 

program-generation process of 10 novices to identify how 

they used simple programming plans to compose larger, more 

complex plans. In this study participants were asked to solve 

programming problems on paper while thinking out loud 

during their problem-solving process. Similar to Soloway’s 

(1986) conceptual framework, Rist analyzed novice use of 

goals and plans, codeding the transcripts according to the 

plans implemented and their order of implementation. The 

findings showed that novice programmers used the primary 

goal of a problem to try and identify a set of known, basic 

programming plans that could be combined to resolve the 

goal. Novices first identified a plan focus, which is the first 

expression or line of a programming plan that is 

implemented; the plan focus served as the anchor for a given 

programming plan. Once the plan focus was implemented, 

the remainder of the plan was expanded around it (referred to 

as program expansion). 

Soloway (1986) used the results of prior studies (Soloway 

and Ehrlich, 1984; Spohrer et al., 1985) to develop a 

conceptual framework describing expert programmers’ 

problem-solving approaches. Soloway proposed that expert 

programmers first obtain an understanding of the goal and 

plan structure of the problem i.e., develop a rough GAP tree. 

Experts then use stepwise refinement, which is the 

breakdown of a problem on the basis of simpler problems the 

programmer has already solve; the solutions for the simpler 

problems provide the solutions to create the solution to the 

current problem. Soloway’s framework proposed that 

novices have difficulty identifying the goals needed to solve 

the problem, as well as face difficulties recalling appropriate 

plans needed to implement the goals. In contrast, expert 

programmers use plan composition to combine the fragments 

of canned solutions into a final solution plan.  

Overall, work described thus far suggests that a key 

difference between expert and novice programmers relates to 

the ability to generate plans (i.e., algorithms in the 

programming domain). Novices are unable to generate a plan 

either because they lack key information or because they are 

unable to link programming steps together.  

Computational Models of Programming 

Prior work has used ACT-R to create cognitive models 

capturing processes related to programming. For instance, the 

ACT-R Programming Tutor (APT), developed by Corbett 

(2000), can write small programs. APT engages in both 

knowledge tracing and model tracing. Knowledge tracing is 

used to assess the probability that a student has successfully 

learned a rule based on application of the rule. For model 

tracing, the tutor uses an underlying production system, 

called its ideal student model, which contains the full set of 

rules to solve all of the practice problems. For each student 

input, once the student has selected their next goal and next 

step, the model tracer generates all possible correct next steps 

and compares these to the student’s input. If the student input 

is correct, problem solving proceeds to the next goal-step 

combination. If the student’s input does not match any of the 

model’s steps, the tutor provides feedback and encourages the 

student to correct the mistake. The model-tracing component 

can write the small programs as it has the relevant 

productions, but it does not taken into account programming 

strategy. 

Soloway’s conceptual framework of programming plans 

discussed above does not formalize plans within a 

computational model. This was partially addressed by 

PROUST, a model built by Johnson and Soloway (1985), 

which could identify strategies in programs students wrote. 

PROUST took as input finished student programs and parsed 

these programs by identifying the strategy/goal 

decomposition used in the program. PROUST used its 

knowledge base of programming plans, strategies, and bugs 

to map out the solution path. This allowed PROUST to parse 

a program and identify deviations from the expected 

programming plan. Thus, PROUST could identify buggy 

programs and diagnose the source of the bug(s). While this 

model could identify strategies used to write a program, it 

was not designed to write programs. 

In sum, to the best of our knowledge, there does not exist 

a computational model that takes into account programmers’ 

strategies to write programs or that models the differences 

between expert and novice programmers.  

Present Work: Cognitive Models of 

Programming 

We now describe two ACT-R models we implemented, 

called the goal expansion model and the SGOMS model. 

Each model aims to produce a solution to a basic 

programming problem using the programming language 

Python – one model simulates a novice approach to solving 

the problem and the second model an expert approach. Both 

models solved the rainfall problem, which requires 

calculating the average of all the positive numbers (including 

0) in a list of daily rainfall amounts, and to stop processing 

the list if a value of -999 is encountered.  

We obtained data on the impact of expertise on 

programming strategies from a case study we conducted 

(Vorobeva & Muldner, 2022). In the this study, 12 novice and 

7 expert programmers were asked to solve the rainfall 

problem. While they worked on the problem, participants 

were asked to think-out loud by verbalizing their thoughts, so 

that data could be obtained on their reasoning and strategies. 

The data was analyzed using a qualitative approach to 

identify participants’ goals and problem-solving approaches, 



and subsequently informed the design of the two cognitive 

models we present here that were implemented to solve the 

same problem.  

 The two models were implemented using Python ACT-R. 

Like ACT-R, Python ACT-R distinguishes two types of 

memory, declarative and procedural. Declarative memory 

stores information using chunks. In the present context, 

chunks include both steps (here, lines of Python code) and 

goals representing higher-level strategies. The declarative 

memory represents information that is known but not 

immediately actionable. In contrast, the procedural memory 

encodes productions, which are if/then statements that 

perform actions when their preconditions are met. The 

preconditions correspond to chunks in the declarative 

memory. These productions are used to generate the Python 

program “steps” (program lines), as will be described shortly.  

Model Components: Overview 

As noted above we implemented two models for simulating 

programming performance. In our framework, a model 

corresponds to the set of productions that define the expert 

and novice problem-solving approaches (the nature of the 

differences between the models will be discussed in the next 

section). The productions rely on information chunks stored 

in the declarative memory and module buffers (described 

below), for their preconditions. While the two models 

simulate different problem-solving strategies (novice vs. 

expert), they both rely on the same modules. Modules are 

specialized components in Python ACT-R, specifying 

distinct functions of the mind (Stewart & West, 2007). A 

given model within Python ACT-R may rely on a number 

modules to help carry out its problem-solving process within 

the environment. Modules exist outside of the model and are 

called upon by the model using the appropriate buffer that 

relays commands from the model to the appropriate module 

(and may also relay information from the module to the 

productions, as is the case for the DM module). The modules 

used by both models include (a) the motor module; (b) the 

environment; and (c) the declarative memory module (see 

Figure 1 for a visual of the modules and their relations). We 

now describe the modules and related buffers. 

The motor module writes the Python program to a file and 

produces a log of the program goals and steps. Thus, the log 

shows a detailed trace of the problem-solving process. The 

motor module has a corresponding motor buffer (see Figure  

1), which is used by the model’s production to control the 

motor module’s behaviour.    

The environment module contains the description of the 

rainfall problem for each model. The environment is the same 

for the two models. Information from the environment is not 

mediated through a buffer.  

The declarative memory module is a general component of 

the Python ACT-R architecture. The model uses a buffer to 

communicate with the declarative memory (see DM Buffer, 

Figure 1), and can use the buffer to add chunks to the 

declarative memory (e.g., reflecting new goals identified) or 

retrieve chunks from memory. Sometimes the declarative 

memory may make mistakes and fail to retrieve facts, or 

retrieve an incorrect fact that matches some of the query 

terms. This reflects that people will not always correctly 

recall information. During such events the model will be 

redirected to repeat the retrieval – it will retrieve the correct 

fact with sufficient attempts. Additionally, in cases where 

multiple facts match the query terms, retrieval is determined 

using a probabilistic calculation, where the association 

strength of the fact (a measure of how often the fact is 

retrieved) determines its probability of being retrieved. While 

both models use the same declarative memory module, they 

are initiated with different information within. 

Both models are initialized with a focus buffer, which 

tracks where the model is in the program-generation process.  

Unless otherwise stated, the focus buffer holds chunks 

corresponding to the primary preconditions that must be met 

for a production to fire. 

While both models produce code and corresponding goals 

associated with the solution process, neither model is capable 

of learning new chunks or productions, i.e., the models do 

not infer new algorithms or programming syntax through 

experience. Instead, the models are initialized with this 

information by the human model builder (and so for the 

present work, each of the two models’ declarative memory 

was initialized prior to problem solving). Both models do add 

goals to the declarative memory, but they do not reflect 

learning of new goals as the goals are generated by the 

model’s productions and thus already exist within 

productions of the model (though unspecified for the problem 

at hand).  

Figure 1: Key system components. The arrows represent 

the direction of information flow. Problem-solving models 

receive information directly from the environment, send 

instructions to the motor module to implement actions in 

the environment (via the motor buffer) and share 

information bi-directionally with the declarative memory 

(through the DM buffer) to manage the problem solving 

process. 



Two ACT-R Models for Program Generation 

Goal Expansion Model This model is inspired by Rist’s 

(1989) framework characterizing novice programming and 

uses the goals and steps identified in Vorobeva and 

Muldners’ (2022) study. In this framework, novices first 

identified a plan focus, and then expanded the plan focus by 

implementing the program steps (e.g., lines in the Python 

program). However, unlike the Rist framework, our goal 

expansion model can identify several goals (more than one) 

directly from the problem statement, based on keyword – goal 

associations – this translates the problem text into high-level 

goals. Goals correspond to the intention to perform a high-

level programming action, needed to solve the problem; for 

example, calculating the average rainfall. The model expands 

these goals into related goals based on goal – goal 

associations. For example, once the model generates the goal 

to calculate the average rainfall, it generates the related goal 

to initialize the variables needed for the average calculation.  

Like the behavior of novices in prior work, the goal 

expansion model does not generate a high-level algorithm 

that orders the goals and steps in advance. Instead, the model 

identifies and addresses goals in the order it retrieves the 

relevant goal associations. Once a goal is generated by the 

model, either from reading the problem statement or after 

goal expansion from one of the keyword-associated goals, the 

chunk representing the goal and associated step is retrieved 

from the declarative memory and stored in the DM buffer. 

The retrieved chunk stored in the DM buffer satisfies the 

precondition for the firing of the production that implements 

the step (i.e., line of Python code) that resolves the goal. The 

step-implementing production sets the model’s focus buffer 

to contain the precondition used by the production that 

generates other related goals, i.e., directs the model to engage 

in goal expansion. If a goal is generated using a goal - goal 

association, it goes through the same implementation process 

as described above; it will subsequently be used to check for 

further goal-goal associations. 

SGOMS Model SGOMS is a cognitive framework that adds 

planning units and unit tasks to ACT-R in order to model 

complex behavior (West & Pronovost, 2009; West & Nagy, 

2007; West & MacDougal, 2015). Planning units represent 

goals, such as calculating average rainfall and initializing 

variables, and reflect the goals identified during the coding 

of the participants’ verbal protocol and written program in 

Vorobeva and Muldner (2022). Planning units are used to 

initialize the model’s declarative memory at the start of 

problem solving and structure the problem-solving process. 

Each planning unit is composed of unit tasks that must be 

completed to resolve the planning unit; collectively. The unit 

tasks for a given planning unit will be referred to as a sub-

algorithm. Unit tasks can either define high-level operations 

or implementational-level operations.  

Implementational unit tasks are what the model uses to 

control implementation of the step, and reflect actions that 

must be taken to implement the code, as well as to make the 

written code fit with the rest of the programmed solution. 

High-level unit tasks are used to implement a planning unit 

hierarchy by allowing planning units to call upon other 

planning units as part of the initial planning unit’s sub-

algorithm. This reflects that the resolution of some goals 

requires the resolution of other goals, and that this creates a 

sort of goal hierarchy. When a high-level unit task calls 

another planning unit (when the planning unit goal requires 

another goal to be resolved), it redirects the model to that new 

planning unit and this unit must be completed first. Once the 

called upon planning unit is complete, i.e., the unit tasks that 

defines its sub-algorithm have all been completed, the model 

redirects to the next unit task of the calling planning unit. For 

example, the calculate average rainfall planning unit has as 

its first unit task to call upon the initialize_variables planning 

unit. This redirects the model to resolving the 

initialize_variables planning unit (by writing the code to 

initialize the variables) before continuing to the next unit 

task, namely the calculate_average planning unit. 

 The model begins program generation by calling on the 

highest-level planning unit relevant to the problem. For the 

rainfall problem, this is the calculate average planning unit. 

This planning unit is considered the highest level as it defines 

a sub-algorithm for the primary goal stated in the problem 

statement (to calculate the average rainfall). The sub-

algorithm includes unit tasks for both high-level (productions 

requests to other planning units) and implementational-level 

productions (requesting variables / conditions and 

implementing steps). The calculate_average planning unit 

will first require the completion of two other planning units 

(initialize_variables and iterate_loop). However, as 

described above, the called upon planning units may 

themselves call additional planning units, such as the 

iterate_loop planning unit calling upon the stop_loop and 

track_variables planning units. When a planning unit is 

complete, it directs the model to the next unit task in the 

planning unit that called it. The program is complete when 

the highest-level planning unit implements its final unit task; 

for the rainfall problem this corresponds to the expression 

that calculates the average in the Python program.  

By using planning units to organize information, the 

program-generation process is guided, but without the need 

to generate the entire algorithm in advance. In this way the 

SGOMS model more closely mimics the behavior shown by 

experts and competent novices in our study (Vorobeva and 

Muldner, 2022). By relying on planning units instead of a 

pre-canned algorithm, the model has the ability to recombine 

the planning units to generate different solutions. This 

reflects the ability of the SGOMS model to be flexible with 

its treatment of goals. For example, the SGOMS model is 

currently capable of generating a simple loop function that 

sums and counts all of the numbers in a list but that does not 

give an average for the positive numbers.   

SGOMS Model vs. Goal Expansion Model As is the case 

with the SGOMS model, the goal expansion model is not 

given a complete algorithm up front. The goal expansion 

model relies on associations in its declarative memory to 

generate the goals, but can not specify the exact relationship 



between associated goals. Consequently, the goal expansion 

model has trouble implementing steps in a coherent order. In 

contrast, the SGOMS model has a concrete structure and 

hierarchy to the goals that is well defined before problem 

solving. However, it does not have a pre-existing complete 

algorithm that defines the implementation of the total 

solution. For example, the planning unit to calculate average 

rainfall initializes the planning units for iterating the loop and 

initializing the variables. However, the calculate average 

rainfall planning unit does not define which planning units 

need to be initialized by the other planning units. Therefore, 

each planning unit functions semi-independently, and can be 

called upon by any number of other planning units, as long 

they are defined by the modeler or by learning mechanisms 

in advance.  In this way planning units may be recombined to 

generate solutions to new problems, something the goal-

expansion model would struggle with. 

 Simulation of Program Generation via each Model  

As described above, both models were implemented using 

Python ACT-R and initialized with the specification of the 

rainfall problem. When we ran each model to simulate the 

problem-solving process by an expert (SGOMS model) and a 

novice (goal expansion model), the SGOMS model was able 

to produce a correct solution but the goal expansion model 

was not. We now describe each model’s problem-solving 

process and output.  

Goal Expansion Model Figure 2 shows the output for the 

goal expansion model. The model was able to form varied 

solutions to the rainfall problem, because there was no set 

order of how to address the goals.  However, it did not 

generate a correct program (possibly with sufficient runs it 

would accomplish it by chance). Specifically, the model had 

difficulty correctly ordering the program steps (recall that a 

step corresponds to a single line of Python code). For 

example, it identified the goal to calculate the average (Figure 

2 line 1) and then wrote the line to the top of the Python file 

to accomplish the goal (Figure 2 line 2). However, the 

variables that were needed to calculate the average had not 

yet been initialized or incremented within the loop function 

(done in Figure 2 lines 4 and 6 respectively). Therefore, the 

written program would be unable to go through the program 

at all as it would not have anything assigned to the variables 

when asked to calculate the average. In general, the goal 

expansion model currently generates solutions based on the 

order of keywords it extracts from the problem statement. 

Thus, adding more refined NLP functionality is needed to 

appropriately assess its validity as a model of novice 

programming. 

 The model produced some of the behavior Rist (1989) 

attributed to novices. It identified goals from the problem 

statement, and engaged in program expansion to add 

additional goals and steps. This allowed the model to connect 

the steps of iterating through the list (a and stopping the loop 

(Figure 2 lines 7-10). By expanding from a keyword – goal 

identified plan focus (in this example the keyword – goal plan 

focus was list - iterating the list), it correctly connected the 

steps together, but was unable to connect both expressions to 

the broader problem statement of calculating the average.  

However, the model was also more sporadic in terms of the 

ordering of its solution goals / steps. We discuss potential 

reasons for this in the discussion. 

SGOMS Model Figure 3 shows the output from the 

SGOMS model. The SGOMS model was able to successfully 

construct the canonical solution as well as a complete 

algorithm specific to the problem (note the complete 

algorithm was not provided to it a priori). Additionally, it 

was able to replicate findings from Vorobeva & Muldner 

(2022) of experts identifying multiple goals before 

implementing them (Figure 3 lines 1 and 2), though this 

ability was restricted to the main goal of calculating the 

average rainfall. This goal is identified at the start but not 

implemented until the very end (Figure 3 lines 1 and 10).  

Discussion 

The aim of the present work was to leverage earlier work 

on expert and novice programmers’ problem solving to 

develop models capable of program generation. Specifically, 

the common goals and steps we identified in both expert and 

novice solutions (Vorobeva and Muldner, 2022) were used to 

create the declarative knowledge chunks (goals - step) and 

productions that implemented the step of the solution. Earlier 

models such as PROUST and APT were capable of 

processing programs but were unable to write whole 

solutions for a programming problem. APT had the 

knowledge base to write small snippets of code, that is 

expressions that would address one goal of an overall 

problem, but was unable to chain them together into a 

complete final solution. While our models are limited in 

scope in terms of their capacity to solve a range of 

programming problems, they are capable of identifying and 

implementing multiple goals and linking them together to 

provide an overall solution pathway (albeit not a correct one 

in the case of the goal expansion model).  

We expected novices to be best modelled by the goal 

expansion model, which reflected Rist’s (1989) framework 

of a novice approach to problem solving. Rist argued that 

Figure 2: Log of Goal Expansion Model's Problem-Solving 

Process 

 

 



novices use a plan focus, that is a core step that is written first 

in the program, and program expansion to expand the plan 

focus by implementing additional steps which supported the 

plan focus step. The goal expansion model was able to 

identify multiple plan focuses from the problem statement 

using the keyword – goal associations in its declarative 

memory, and expand around those plan focuses with relevant 

goals. However, many novice participants in our study 

(Vorobeva & Muldner, 2022) did not rely on or use a plan 

focus as predicted by the Rist framework. Hence neither the 

Rist framework or the goal expansion model accurately 

modelled all of the novices.  

 Differences between the performance of some novices and 

the model of novice behaviors (i.e., the goal expansion 

model) may be due to the simplicity of the rainfall problem 

not requiring a more generative problem-solving process by 

not requiring many goals and steps. Additionally, the model’s 

lack of a revision and reflection mechanism made it difficult 

to engage in program expansion, as the model could not write 

steps that would precede other already written steps. For 

example, the model was not able to initialize variables at the 

top of the file if it had already implemented the loop that 

incremented them. Thus, the goal expansion model was 

limited to only depicting strict forward expansion, where 

program expansion would follow the same order as the final 

working solution. In earlier work, Byckling and Sajaniemi 

(2006) found that strict forward expansion occurred only in 

more competent novices, and thus the goal expansion model 

is limited as a model of all novices. 

The SGOMS model best represented the performance of 

the experts and competent novices, as it produced output that 

showed the greatest degree of similarity to the outputs 

produced by experts (and some novices) as determined by a 

qualitative analysis. It replicated some of the expert’s 

behaviours, such as identifying multiple goals in a row 

(without step implementation), thus demonstrating some pre-

planning capabilities.  

While the models were informative, there are various 

improvements we are working on. For instance, the models 

could benefit in terms of validity if they had productions 

capable of reflecting on and revising the programs written 

(this would allow the model to insert written code in between 

or in front of existing lines of already written code, as 

needed). This problem with the lack of reflection and revision 

is most apparent in the inability of the models to capture the 

novice and expert ability to engage in backwards program 

expansion (the models are only capable of strict forward 

expansion). This could be implemented through the expanded 

use of planning units in the future. Moreover, given that the 

present models have only been tested on a single problem, 

more work is needed to test and generalize them with a range 

of problems.  

In the future it might also be beneficial to extend the model 

with the ability to construct a GAP tree of the type described 

in prior work (Spohrer et al., 1985; Soloway 1986). A GAP 

tree would allow the model to have a high-level 

representation of the overall problem and the current state of 

the problem and would supplement the existing hierarchical 

structure of the planning units. For problems more complex 

than the rainfall problem, the current version of the SGOMS 

model may have difficulties managing more complex 

arrangements of goals/planning units and determining the 

best implementation order. One potential solution to this 

issue could be to add an additional buffer that constructs and 

tracks a hierarchy tree of goals. Another possibility is the 

addition of declarative knowledge of how to best arrange 

multiple subgoals during implementation (such as ensuring 

that the step for variable tracking is always written within the 

loop iterating the relevant list) to the declarative memory.   

In spite of these limitations, the models presented in this 

paper matched some of the novice and expert performance 

from our study (Vorobeva and Muldner, 2022). Additionally, 

they were capable of capturing various problem-solving 

strategies from the study conducted and prior research.  
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