
Modelling Expert and Novice Programming Strategies using Python ACT-R

Maria Vorobeva, Robert West, Kasia Muldner

Department of Cognitive Science

Carleton University, Ottawa, Canada

Abstract

Cognitive architectures have been used to model human
problem-solving strategies and behaviours in complex
domains – here, we focus on programming. However, to date,
models of programming have not included various strategies
for generating programs. To address this, the present paper
describes two cognitive models that simulate a novice and
expert strategy for solving a programming problem in Python.
The models were based on theoretical frameworks of expert
and novice programming. The SGOMS framework was best
for modeling experts and competent novices, because it
provided functionality to represent goals and plans that
mirrored ones used by these individuals.

Keywords: Python ACT-R, cognitive modelling,
programming, expertise

Introduction

Programming is a complex skill that requires time and

practice to master. To date, however, the components of this

skill and corresponding cognitive mechanisms are not clear.

As we describe below, one way to fill this gap involves the

construction of a cognitive model.

A cognitive model is a formalization of cognitive

mechanisms that are hypothesized to impact problem solving

and performance within a particular domain. A common

cognitive architecture for building cognitive models is ACT-

R (Anderson & Lebiere, 1998). ACT-R uses productions

(if/then rules) to model problem solving in a given domain,

and declarative memory to store facts about the domain. This

architecture has inspired other similar architectures, such as

Python ACT-R (Stewart & West, 2007), which is used in the

present work. Implementing a cognitive model has a number

of benefits. It requires the human author (i.e., the model

builder) to formally specify the declarative and procedural

knowledge needed to solve problems in a given domain. This

formalization step is beneficial as it clarifies the cognitive

mechanisms (Frischkorn & Schubert, 2018). Moreover, the

model provides an environment for testing theories about the

hypothesized cognitive mechanisms.

There is substantial work in the ACT-R community and

beyond involving cognitive models for a range of tasks. In

this review, we focus on problem-solving tasks in science

domains. Two common domains used to implement cognitive

models include physics and math (Braithwaite et al., 2017;

VanLehn et al., 1991). To illustrate, the model Cascade

formalized the mechanisms for self-explanation and

analogical transfer used during physics problem solving

(VanLehn et al., 1991). Another example is FARRA

(Braithwaite et al., 2017), which is a model of fraction

problem solving. FARRA simulations demonstrated that the

distribution of problems in mathematics textbooks may

inadvertently strengthen student misconceptions. Relevant to

the present work, some researchers have formalized

knowledge representations for program generation (Johnson

& Soloway, 1985; Pirolli, 1986; Corbett, 2000). The focus of

this work was to parse and/or track students’ code generation

and provide feedback on program statements. To date,

however, there does not exist work on implementing

cognitive models of programming that simulate different

strategies based on a programmer’s knowledge (novice vs.

expert).

The present paper takes a step towards filling this gap.

Specifically, we identify the knowledge representations

needed to program and embed them within computational

ACT-R models capable of producing solutions to simple

programming problems. Programming was chosen as the

domain as it represents a complex problem-solving skill, with

competing frameworks providing insight into the process

programmers engage in while writing programs. Two models

are implemented that simulate a novice and expert approach,

respectively, to programming.

Novice and Expert Programming Approaches

 Since the models we implemented are influenced by

theories of expertise, we begin with a brief overview of these,

focusing on work in the programming domain. Programmers’

mental representations are pivotal to programming

performance and ability. For instance, programmers find it

easier to read and understand the output of a program when

the language uses functions that align with the programmer’s

underlying problem-solving strategy (Soloway et al., 1983).

Of particular interest for the present work are studies

investigating programming expertise (Spohrer et al., 1985;

Soloway & Ehrlich, 1984).

Early programming frameworks characterizing novice

programming focused on identifying the origins of common

bugs in novice programmers’ code. Spohrer et al. (1985) used

a representational framework called GAP trees (Goal and

plan networks) to parse the programs of novice programmers,

categorize bugs, and identify the problem-dependent

knowledge that led to bugs. The GAP framework

decomposes a program using a solution space containing a

program’s goals, and the set of plans that implement those

goals (e.g., through decomposition into smaller goals and

plans). Spohrer et al. referred to this solution space as a GAP

tree (goal-and-plan tree). There are two types of GAP trees

for programs: (1) inferred trees, defined as having goals with

multiple executable plans, and (2) solution subtrees, which

are branches in the larger inferred GAP tree linking a single

execution plan to a goal. Students who were not able to

correctly complete programming tasks usually had an error

in, or the complete absence of, one or more of the GAP tree

components. This suggests that novice errors are caused by

missing goal(s), or by incorrect knowledge representation(s).

Rist (1989) also studied novices, by analyzing the

program-generation process of 10 novices to identify how

they used simple programming plans to compose larger, more

complex plans. In this study participants were asked to solve

programming problems on paper while thinking out loud

during their problem-solving process. Similar to Soloway’s

(1986) conceptual framework, Rist analyzed novice use of

goals and plans, codeding the transcripts according to the

plans implemented and their order of implementation. The

findings showed that novice programmers used the primary

goal of a problem to try and identify a set of known, basic

programming plans that could be combined to resolve the

goal. Novices first identified a plan focus, which is the first

expression or line of a programming plan that is

implemented; the plan focus served as the anchor for a given

programming plan. Once the plan focus was implemented,

the remainder of the plan was expanded around it (referred to

as program expansion).

Soloway (1986) used the results of prior studies (Soloway

and Ehrlich, 1984; Spohrer et al., 1985) to develop a

conceptual framework describing expert programmers’

problem-solving approaches. Soloway proposed that expert

programmers first obtain an understanding of the goal and

plan structure of the problem i.e., develop a rough GAP tree.

Experts then use stepwise refinement, which is the

breakdown of a problem on the basis of simpler problems the

programmer has already solve; the solutions for the simpler

problems provide the solutions to create the solution to the

current problem. Soloway’s framework proposed that

novices have difficulty identifying the goals needed to solve

the problem, as well as face difficulties recalling appropriate

plans needed to implement the goals. In contrast, expert

programmers use plan composition to combine the fragments

of canned solutions into a final solution plan.

Overall, work described thus far suggests that a key

difference between expert and novice programmers relates to

the ability to generate plans (i.e., algorithms in the

programming domain). Novices are unable to generate a plan

either because they lack key information or because they are

unable to link programming steps together.

Computational Models of Programming

Prior work has used ACT-R to create cognitive models

capturing processes related to programming. For instance, the

ACT-R Programming Tutor (APT), developed by Corbett

(2000), can write small programs. APT engages in both

knowledge tracing and model tracing. Knowledge tracing is

used to assess the probability that a student has successfully

learned a rule based on application of the rule. For model

tracing, the tutor uses an underlying production system,

called its ideal student model, which contains the full set of

rules to solve all of the practice problems. For each student

input, once the student has selected their next goal and next

step, the model tracer generates all possible correct next steps

and compares these to the student’s input. If the student input

is correct, problem solving proceeds to the next goal-step

combination. If the student’s input does not match any of the

model’s steps, the tutor provides feedback and encourages the

student to correct the mistake. The model-tracing component

can write the small programs as it has the relevant

productions, but it does not taken into account programming

strategy.

Soloway’s conceptual framework of programming plans

discussed above does not formalize plans within a

computational model. This was partially addressed by

PROUST, a model built by Johnson and Soloway (1985),

which could identify strategies in programs students wrote.

PROUST took as input finished student programs and parsed

these programs by identifying the strategy/goal

decomposition used in the program. PROUST used its

knowledge base of programming plans, strategies, and bugs

to map out the solution path. This allowed PROUST to parse

a program and identify deviations from the expected

programming plan. Thus, PROUST could identify buggy

programs and diagnose the source of the bug(s). While this

model could identify strategies used to write a program, it

was not designed to write programs.

In sum, to the best of our knowledge, there does not exist

a computational model that takes into account programmers’

strategies to write programs or that models the differences

between expert and novice programmers.

Present Work: Cognitive Models of

Programming

We now describe two ACT-R models we implemented,

called the goal expansion model and the SGOMS model.

Each model aims to produce a solution to a basic

programming problem using the programming language

Python – one model simulates a novice approach to solving

the problem and the second model an expert approach. Both

models solved the rainfall problem, which requires

calculating the average of all the positive numbers (including

0) in a list of daily rainfall amounts, and to stop processing

the list if a value of -999 is encountered.

We obtained data on the impact of expertise on

programming strategies from a case study we conducted

(Vorobeva & Muldner, 2022). In the this study, 12 novice and

7 expert programmers were asked to solve the rainfall

problem. While they worked on the problem, participants

were asked to think-out loud by verbalizing their thoughts, so

that data could be obtained on their reasoning and strategies.

The data was analyzed using a qualitative approach to

identify participants’ goals and problem-solving approaches,

and subsequently informed the design of the two cognitive

models we present here that were implemented to solve the

same problem.

 The two models were implemented using Python ACT-R.

Like ACT-R, Python ACT-R distinguishes two types of

memory, declarative and procedural. Declarative memory

stores information using chunks. In the present context,

chunks include both steps (here, lines of Python code) and

goals representing higher-level strategies. The declarative

memory represents information that is known but not

immediately actionable. In contrast, the procedural memory

encodes productions, which are if/then statements that

perform actions when their preconditions are met. The

preconditions correspond to chunks in the declarative

memory. These productions are used to generate the Python

program “steps” (program lines), as will be described shortly.

Model Components: Overview

As noted above we implemented two models for simulating

programming performance. In our framework, a model

corresponds to the set of productions that define the expert

and novice problem-solving approaches (the nature of the

differences between the models will be discussed in the next

section). The productions rely on information chunks stored

in the declarative memory and module buffers (described

below), for their preconditions. While the two models

simulate different problem-solving strategies (novice vs.

expert), they both rely on the same modules. Modules are

specialized components in Python ACT-R, specifying

distinct functions of the mind (Stewart & West, 2007). A

given model within Python ACT-R may rely on a number

modules to help carry out its problem-solving process within

the environment. Modules exist outside of the model and are

called upon by the model using the appropriate buffer that

relays commands from the model to the appropriate module

(and may also relay information from the module to the

productions, as is the case for the DM module). The modules

used by both models include (a) the motor module; (b) the

environment; and (c) the declarative memory module (see

Figure 1 for a visual of the modules and their relations). We

now describe the modules and related buffers.

The motor module writes the Python program to a file and

produces a log of the program goals and steps. Thus, the log

shows a detailed trace of the problem-solving process. The

motor module has a corresponding motor buffer (see Figure

1), which is used by the model’s production to control the

motor module’s behaviour.

The environment module contains the description of the

rainfall problem for each model. The environment is the same

for the two models. Information from the environment is not

mediated through a buffer.

The declarative memory module is a general component of

the Python ACT-R architecture. The model uses a buffer to

communicate with the declarative memory (see DM Buffer,

Figure 1), and can use the buffer to add chunks to the

declarative memory (e.g., reflecting new goals identified) or

retrieve chunks from memory. Sometimes the declarative

memory may make mistakes and fail to retrieve facts, or

retrieve an incorrect fact that matches some of the query

terms. This reflects that people will not always correctly

recall information. During such events the model will be

redirected to repeat the retrieval – it will retrieve the correct

fact with sufficient attempts. Additionally, in cases where

multiple facts match the query terms, retrieval is determined

using a probabilistic calculation, where the association

strength of the fact (a measure of how often the fact is

retrieved) determines its probability of being retrieved. While

both models use the same declarative memory module, they

are initiated with different information within.

Both models are initialized with a focus buffer, which

tracks where the model is in the program-generation process.

Unless otherwise stated, the focus buffer holds chunks

corresponding to the primary preconditions that must be met

for a production to fire.

While both models produce code and corresponding goals

associated with the solution process, neither model is capable

of learning new chunks or productions, i.e., the models do

not infer new algorithms or programming syntax through

experience. Instead, the models are initialized with this

information by the human model builder (and so for the

present work, each of the two models’ declarative memory

was initialized prior to problem solving). Both models do add

goals to the declarative memory, but they do not reflect

learning of new goals as the goals are generated by the

model’s productions and thus already exist within

productions of the model (though unspecified for the problem

at hand).

Figure 1: Key system components. The arrows represent

the direction of information flow. Problem-solving models

receive information directly from the environment, send

instructions to the motor module to implement actions in

the environment (via the motor buffer) and share

information bi-directionally with the declarative memory

(through the DM buffer) to manage the problem solving

process.

Two ACT-R Models for Program Generation

Goal Expansion Model This model is inspired by Rist’s

(1989) framework characterizing novice programming and

uses the goals and steps identified in Vorobeva and

Muldners’ (2022) study. In this framework, novices first

identified a plan focus, and then expanded the plan focus by

implementing the program steps (e.g., lines in the Python

program). However, unlike the Rist framework, our goal

expansion model can identify several goals (more than one)

directly from the problem statement, based on keyword – goal

associations – this translates the problem text into high-level

goals. Goals correspond to the intention to perform a high-

level programming action, needed to solve the problem; for

example, calculating the average rainfall. The model expands

these goals into related goals based on goal – goal

associations. For example, once the model generates the goal

to calculate the average rainfall, it generates the related goal

to initialize the variables needed for the average calculation.

Like the behavior of novices in prior work, the goal

expansion model does not generate a high-level algorithm

that orders the goals and steps in advance. Instead, the model

identifies and addresses goals in the order it retrieves the

relevant goal associations. Once a goal is generated by the

model, either from reading the problem statement or after

goal expansion from one of the keyword-associated goals, the

chunk representing the goal and associated step is retrieved

from the declarative memory and stored in the DM buffer.

The retrieved chunk stored in the DM buffer satisfies the

precondition for the firing of the production that implements

the step (i.e., line of Python code) that resolves the goal. The

step-implementing production sets the model’s focus buffer

to contain the precondition used by the production that

generates other related goals, i.e., directs the model to engage

in goal expansion. If a goal is generated using a goal - goal

association, it goes through the same implementation process

as described above; it will subsequently be used to check for

further goal-goal associations.

SGOMS Model SGOMS is a cognitive framework that adds

planning units and unit tasks to ACT-R in order to model

complex behavior (West & Pronovost, 2009; West & Nagy,

2007; West & MacDougal, 2015). Planning units represent

goals, such as calculating average rainfall and initializing

variables, and reflect the goals identified during the coding

of the participants’ verbal protocol and written program in

Vorobeva and Muldner (2022). Planning units are used to

initialize the model’s declarative memory at the start of

problem solving and structure the problem-solving process.

Each planning unit is composed of unit tasks that must be

completed to resolve the planning unit; collectively. The unit

tasks for a given planning unit will be referred to as a sub-

algorithm. Unit tasks can either define high-level operations

or implementational-level operations.

Implementational unit tasks are what the model uses to

control implementation of the step, and reflect actions that

must be taken to implement the code, as well as to make the

written code fit with the rest of the programmed solution.

High-level unit tasks are used to implement a planning unit

hierarchy by allowing planning units to call upon other

planning units as part of the initial planning unit’s sub-

algorithm. This reflects that the resolution of some goals

requires the resolution of other goals, and that this creates a

sort of goal hierarchy. When a high-level unit task calls

another planning unit (when the planning unit goal requires

another goal to be resolved), it redirects the model to that new

planning unit and this unit must be completed first. Once the

called upon planning unit is complete, i.e., the unit tasks that

defines its sub-algorithm have all been completed, the model

redirects to the next unit task of the calling planning unit. For

example, the calculate average rainfall planning unit has as

its first unit task to call upon the initialize_variables planning

unit. This redirects the model to resolving the

initialize_variables planning unit (by writing the code to

initialize the variables) before continuing to the next unit

task, namely the calculate_average planning unit.

 The model begins program generation by calling on the

highest-level planning unit relevant to the problem. For the

rainfall problem, this is the calculate average planning unit.

This planning unit is considered the highest level as it defines

a sub-algorithm for the primary goal stated in the problem

statement (to calculate the average rainfall). The sub-

algorithm includes unit tasks for both high-level (productions

requests to other planning units) and implementational-level

productions (requesting variables / conditions and

implementing steps). The calculate_average planning unit

will first require the completion of two other planning units

(initialize_variables and iterate_loop). However, as

described above, the called upon planning units may

themselves call additional planning units, such as the

iterate_loop planning unit calling upon the stop_loop and

track_variables planning units. When a planning unit is

complete, it directs the model to the next unit task in the

planning unit that called it. The program is complete when

the highest-level planning unit implements its final unit task;

for the rainfall problem this corresponds to the expression

that calculates the average in the Python program.

By using planning units to organize information, the

program-generation process is guided, but without the need

to generate the entire algorithm in advance. In this way the

SGOMS model more closely mimics the behavior shown by

experts and competent novices in our study (Vorobeva and

Muldner, 2022). By relying on planning units instead of a

pre-canned algorithm, the model has the ability to recombine

the planning units to generate different solutions. This

reflects the ability of the SGOMS model to be flexible with

its treatment of goals. For example, the SGOMS model is

currently capable of generating a simple loop function that

sums and counts all of the numbers in a list but that does not

give an average for the positive numbers.

SGOMS Model vs. Goal Expansion Model As is the case

with the SGOMS model, the goal expansion model is not

given a complete algorithm up front. The goal expansion

model relies on associations in its declarative memory to

generate the goals, but can not specify the exact relationship

between associated goals. Consequently, the goal expansion

model has trouble implementing steps in a coherent order. In

contrast, the SGOMS model has a concrete structure and

hierarchy to the goals that is well defined before problem

solving. However, it does not have a pre-existing complete

algorithm that defines the implementation of the total

solution. For example, the planning unit to calculate average

rainfall initializes the planning units for iterating the loop and

initializing the variables. However, the calculate average

rainfall planning unit does not define which planning units

need to be initialized by the other planning units. Therefore,

each planning unit functions semi-independently, and can be

called upon by any number of other planning units, as long

they are defined by the modeler or by learning mechanisms

in advance. In this way planning units may be recombined to

generate solutions to new problems, something the goal-

expansion model would struggle with.

 Simulation of Program Generation via each Model

As described above, both models were implemented using

Python ACT-R and initialized with the specification of the

rainfall problem. When we ran each model to simulate the

problem-solving process by an expert (SGOMS model) and a

novice (goal expansion model), the SGOMS model was able

to produce a correct solution but the goal expansion model

was not. We now describe each model’s problem-solving

process and output.

Goal Expansion Model Figure 2 shows the output for the

goal expansion model. The model was able to form varied

solutions to the rainfall problem, because there was no set

order of how to address the goals. However, it did not

generate a correct program (possibly with sufficient runs it

would accomplish it by chance). Specifically, the model had

difficulty correctly ordering the program steps (recall that a

step corresponds to a single line of Python code). For

example, it identified the goal to calculate the average (Figure

2 line 1) and then wrote the line to the top of the Python file

to accomplish the goal (Figure 2 line 2). However, the

variables that were needed to calculate the average had not

yet been initialized or incremented within the loop function

(done in Figure 2 lines 4 and 6 respectively). Therefore, the

written program would be unable to go through the program

at all as it would not have anything assigned to the variables

when asked to calculate the average. In general, the goal

expansion model currently generates solutions based on the

order of keywords it extracts from the problem statement.

Thus, adding more refined NLP functionality is needed to

appropriately assess its validity as a model of novice

programming.

 The model produced some of the behavior Rist (1989)

attributed to novices. It identified goals from the problem

statement, and engaged in program expansion to add

additional goals and steps. This allowed the model to connect

the steps of iterating through the list (a and stopping the loop

(Figure 2 lines 7-10). By expanding from a keyword – goal

identified plan focus (in this example the keyword – goal plan

focus was list - iterating the list), it correctly connected the

steps together, but was unable to connect both expressions to

the broader problem statement of calculating the average.

However, the model was also more sporadic in terms of the

ordering of its solution goals / steps. We discuss potential

reasons for this in the discussion.

SGOMS Model Figure 3 shows the output from the

SGOMS model. The SGOMS model was able to successfully

construct the canonical solution as well as a complete

algorithm specific to the problem (note the complete

algorithm was not provided to it a priori). Additionally, it

was able to replicate findings from Vorobeva & Muldner

(2022) of experts identifying multiple goals before

implementing them (Figure 3 lines 1 and 2), though this

ability was restricted to the main goal of calculating the

average rainfall. This goal is identified at the start but not

implemented until the very end (Figure 3 lines 1 and 10).

Discussion

The aim of the present work was to leverage earlier work

on expert and novice programmers’ problem solving to

develop models capable of program generation. Specifically,

the common goals and steps we identified in both expert and

novice solutions (Vorobeva and Muldner, 2022) were used to

create the declarative knowledge chunks (goals - step) and

productions that implemented the step of the solution. Earlier

models such as PROUST and APT were capable of

processing programs but were unable to write whole

solutions for a programming problem. APT had the

knowledge base to write small snippets of code, that is

expressions that would address one goal of an overall

problem, but was unable to chain them together into a

complete final solution. While our models are limited in

scope in terms of their capacity to solve a range of

programming problems, they are capable of identifying and

implementing multiple goals and linking them together to

provide an overall solution pathway (albeit not a correct one

in the case of the goal expansion model).

We expected novices to be best modelled by the goal

expansion model, which reflected Rist’s (1989) framework

of a novice approach to problem solving. Rist argued that

Figure 2: Log of Goal Expansion Model's Problem-Solving

Process

novices use a plan focus, that is a core step that is written first

in the program, and program expansion to expand the plan

focus by implementing additional steps which supported the

plan focus step. The goal expansion model was able to

identify multiple plan focuses from the problem statement

using the keyword – goal associations in its declarative

memory, and expand around those plan focuses with relevant

goals. However, many novice participants in our study

(Vorobeva & Muldner, 2022) did not rely on or use a plan

focus as predicted by the Rist framework. Hence neither the

Rist framework or the goal expansion model accurately

modelled all of the novices.

 Differences between the performance of some novices and

the model of novice behaviors (i.e., the goal expansion

model) may be due to the simplicity of the rainfall problem

not requiring a more generative problem-solving process by

not requiring many goals and steps. Additionally, the model’s

lack of a revision and reflection mechanism made it difficult

to engage in program expansion, as the model could not write

steps that would precede other already written steps. For

example, the model was not able to initialize variables at the

top of the file if it had already implemented the loop that

incremented them. Thus, the goal expansion model was

limited to only depicting strict forward expansion, where

program expansion would follow the same order as the final

working solution. In earlier work, Byckling and Sajaniemi

(2006) found that strict forward expansion occurred only in

more competent novices, and thus the goal expansion model

is limited as a model of all novices.

The SGOMS model best represented the performance of

the experts and competent novices, as it produced output that

showed the greatest degree of similarity to the outputs

produced by experts (and some novices) as determined by a

qualitative analysis. It replicated some of the expert’s

behaviours, such as identifying multiple goals in a row

(without step implementation), thus demonstrating some pre-

planning capabilities.

While the models were informative, there are various

improvements we are working on. For instance, the models

could benefit in terms of validity if they had productions

capable of reflecting on and revising the programs written

(this would allow the model to insert written code in between

or in front of existing lines of already written code, as

needed). This problem with the lack of reflection and revision

is most apparent in the inability of the models to capture the

novice and expert ability to engage in backwards program

expansion (the models are only capable of strict forward

expansion). This could be implemented through the expanded

use of planning units in the future. Moreover, given that the

present models have only been tested on a single problem,

more work is needed to test and generalize them with a range

of problems.

In the future it might also be beneficial to extend the model

with the ability to construct a GAP tree of the type described

in prior work (Spohrer et al., 1985; Soloway 1986). A GAP

tree would allow the model to have a high-level

representation of the overall problem and the current state of

the problem and would supplement the existing hierarchical

structure of the planning units. For problems more complex

than the rainfall problem, the current version of the SGOMS

model may have difficulties managing more complex

arrangements of goals/planning units and determining the

best implementation order. One potential solution to this

issue could be to add an additional buffer that constructs and

tracks a hierarchy tree of goals. Another possibility is the

addition of declarative knowledge of how to best arrange

multiple subgoals during implementation (such as ensuring

that the step for variable tracking is always written within the

loop iterating the relevant list) to the declarative memory.

In spite of these limitations, the models presented in this

paper matched some of the novice and expert performance

from our study (Vorobeva and Muldner, 2022). Additionally,

they were capable of capturing various problem-solving

strategies from the study conducted and prior research.

Acknowledgments

This work was supported by an NSERC Discovery Grant

(#1507).

Figure 3: Log of SGOMS Model's Problem-Solving Process

References

Anderson, J. R., & Lebiere, C. (1998). The atomic

components of thought. Lawrence Erlbaum Associates.

Braithwaite, D. W., Pyke, A. A., & Siegler, R. S. (2017). A

computational model of fraction arithmetic. Psychological

Review, 124(5), 603–625.

Corbett, A. (2000). Cognitive mastery learning in the act

programming tutor. In Adaptive User Interfaces. AAAI SS-

00-01.

Frischkorn, G. T., & Schubert, A. L. (2018). Cognitive

models in intelligence research: Advantages and

recommendations for their application. Journal of

Intelligence, 6(3), 34-56.

Johnson, W. L., & Soloway, E. (1985). PROUST:

Knowledge-based program understanding. IEEE

Transactions on Software Engineering, 3, 267–275.

Pirolli, P. (1986). A cognitive model and computer tutor for

programming recursion. Human-Computer Interaction,

2(4), 319-355.

Rist, R. S. (1989). Schema Creation in Programming.

Cognitive Science, 13(3), 389–414.

Sajaniemi, J. (2002). An empirical analysis of roles of

variables in novice-level procedural programs. In

Proceedings IEEE 2002 Symposia on Human Centric

Computing Languages and Environments, 37–39.

https://doi.org/10.1109/HCC.2002.1046340

Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive

strategies and looping constructs: An empirical study.

Communications of the ACM, 26(11), 853–860.

https://doi.org/10.1145/182.358436

Soloway, E., & Ehrlich, K. (1984). Empirical studies of

programming knowledge. IEEE Transactions on software

engineering, (5), 595-609.

Spohrer, J. C., Soloway, Elliot, & Pope, E. (1985). A

goal/plan analysis of buggy Pascal programs. Human–

Computer Interaction, 1(2), 163–207.

Stewart, T. C., & West, R. L. (2007). Deconstructing and

reconstructing ACT-R: Exploring the architectural space.

Cognitive Systems Research, 8(3), 227–236.

https://doi.org/10.1016/j.cogsys.2007.06.006

VanLehn, K., Randolph, J. M., & Chi, M. T. H. (1991).

Modeling the Self-explanation Effect with Cascade 3. In

Proceedings of the Thirteenth Annual Conference of the

Cognitive Science Society, 132–137.

Vorobeva, M., & Muldner, K. (2022). Investigating Expert

and Novice Programming Problem Solving. In

Proceedings of the Annual Meeting of the Cognitive

Science Society, 44.

West, R. L., & Pronovost, S. (2009). Modeling SGOMS in

ACT-R: Linking Macro- and Microcognition. Journal of

Cognitive Engineering and Decision Making, 3(2), 194–

207. https://doi.org/10.1518/155534309X441853

West, R. L., & Nagy, G. (2007). Using GOMS for modeling

routine tasks within complex sociotechnical systems:

Connecting macrocognitive models to microcognition.

Journal of Cognitive Engineering and Decision Making,

1(2), 186-211.

West, R. L., & MacDougall, K. (2014). The macro-

architecture hypothesis: Modifying Newell’s system levels

to include macro-cognition. Biologically Inspired

Cognitive Architectures, 8, 140-149.

https://doi.org/10.1518/155534309X441853

