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Abstract
The incredible specificity and fidelity of human memory en-
coding is thought to be supported by a process known as
pattern separation (Marr, 1971). Behaviorally, this is typ-
ically inferred via performance in the Mnemonic Similarity
Task (MST; (Stark, Kirwan, & Stark, 2019)), an object recog-
nition task with added similar “lure” images, from which a
key metric, the Lure Discrimination Index (LDI) is calculated.
Supported by an extensive literature validating its predictive
power, this measure is gaining increasing use as a diagnostic
of cognitive decline and neurological dysfunction. It is how-
ever unclear the exact mechanism through which this behav-
ioral measure of pattern separation reflects the underlying neu-
ral computations. In particular, choices alone cannot in prin-
ciple distinguish the degree to which a given behavior results
from signal-based discrimination of the object in question (i.e.
the putative separated patterns) versus a more general tendency
to inhibit or excite responses (e.g. response caution). Here, we
distinguish these potentially co-contributing factors by model-
ing response times using a sequential sampling framework that
identifies independent contributions to choices made by signal-
noise discrimination and response thresholding. Across two
independent datasets encompassing a lifespan sample (total
N = 307, ages 8-89), we find evidence that both factors reliably
contribute to response behavior, but that signal discrimination
is both more strongly correlated with Lure and Foil discrimi-
nation and more stable within-individual than response thresh-
olding, suggesting that this model-derived parameter may be
a more specific and reliable measure of the underlying trait of
interest in studies of pattern separation.
Keywords: memory and discrimination; evidence accumula-
tion; recognition

Introduction
How do individuals encode objects in memory, and how does
the distinctiveness of encoding affect behavioral expressions
of recognition? These functions are thought to be supported
by a process known as pattern separation, whereby simi-
lar sensory or latent input patterns are projected into higher-
dimensional space to create highly distinct patterns that sup-
port later discrimination among fine degrees of difference
(Stark et al., 2019). Traditionally, this process has been at-
tributed to the hippocampus, a critical brain structure for
learning and memory (Long, Lee, & Kuhl, 2016; Marr, 1971;
Stark et al., 2019). Computational models predict that the
more distinct object representations are (i.e. the “better” an
individual is at pattern separating), the better an individual
will be able to discriminate between objects that were seen
previously and those that weren’t. In particular, people who
are better at pattern separating should be less susceptible to
interference when novel objects are similar to the previously
seen objects.

The most widely used behavioral measure of pattern sepa-
ration, known as the Lure Discrimination Index (LDI), stems

from the 3AFC Mnemonic Similarity Task (MST), a modi-
fied object recognition task (Stark et al., 2019). In the typical
version of this experiment, individuals first complete a learn-
ing phase where they study a collection of object pictures.
Then, during the recognition phase, individuals see a series
of objects of one of three types: repeats, or objects they had
seen before during learning; lures, which vary in degrees of
similarity to the repeats; and foils, which are totally new ob-
jects never seen before in the experiment. Thus responses on
these three trials can be analyzed to quantify how sensitively
an individual discriminates between what they have, and have
not seen before. This measure, the LDI, has been shown to
correlate with standard behavioral and physical measures of
cognitive decline and neurological dysfunction (Stark et al.,
2019).

It is however an open question as to what aspects of recog-
nition memory behavior are measured by the LDI. Specifi-
cally, it is unclear to what degree LDI solely reflects the ac-
tual “separation” of the underlying memory representations
(in Signal Detection Theory terms, the separation between
signal and noise distributions), versus more general response
selection processes (e.g. the threshold for response execu-
tion). To the extent that LDI is indeed a measure consistent
with hippocampal pattern separation, we would predict the
latter: that it would correspond with an increase in signal to
noise ratio (Long et al., 2016).

Sequential sampling models of response time provide an
excellent method to assess these separable influences on
recognition memory. This family of models, specifically the
Linear Ballistica Accumulator which we use in this paper,
robustly distinguishes separable contributions to behavior of
both signal-noise separation (as drift rate) and response ex-
ecution (as threshold/boundary or starting point) (Brown &
Heathcote, 2008).

Here, we model response times to examine the relation-
ship between LDI and components of the recognition mem-
ory process. We find evidence for both processes contribut-
ing to measured LDI, examine their relative contributions to
choices, and assess their ability to predict behavior out-of-
sample. Our results support the suggestion that LDI can be
decomposed to isolate a stable, separable signal-based mea-
sure of memory discrimination. This measure may further
improve the reliability and precision with which clinical prac-
titioners can assess a key transdiagnostic process underlying
a wide array of disorders and neurological conditions.



Methods
Data and Experiments
We model two data sets of individuals that completed the
Mnemonic Similarity Task (MST). In this task, participants
initially completed an “encoding” phase where they catego-
rized unique objects as either belonging indoors or outdoors.
They were also told that they would be subsequently tested
on their memory of these objects.

Then, participants made a sequence of recognition choices
during the “test” phase where they identified each object as
either a repeat (seen before during the encoding phase), lure
(similar to an object seen during encoding), or foil (a brand
new object). Participants saw 1

3 repeated objects, 1
3 lures,

and 1
3 foils. There was no feedback after each choice (i.e.

participants were not informed if their choice was accurate
or not) and subjects had up to 10s to make a choice. The
presentation order was fully randomized.

Experiment 1 We model n = 223 adult subjects (ages
18− 89, median = 41, 141 female). Subjects saw 128 trials
during the encoding phase, and made 192 recognition judge-
ments during the test phase. The data was collected in two
modalities: online via Amazon mTurk (n = 173) and in per-
son (n = 72).

Experiment 2 We model n = 84 subjects (ages 8−25, me-
dian = 15, 53 female). Subjects saw 64 trials during the en-
coding phase, and made 96 recognition judgements during
the test phase. The data was all collected online via Amazon
mTurk. All participant ages in Experiment 2 were verified
using photographs of government-issued identification cards.

Choice Behavior Measures
To quantify memory discriminability, we compute the Lure
Discrimination Index (LDI) as in (Stark et al., 2019).

(1)LDI = P( Lure Response | Lure Trial )
− P( Lure Response | Foil Trial )

The LDI provides a sensitive measure of how reliably an indi-
vidual distinguishes object photographs that were seen during
the encoding phase from similar ‘lures’ presented during the
test phase. This measure is typically interpreted as robust in
that the more distinctly an individual encodes a previously
seen object, the less they will subject to interference from
both similar lures and unrelated foils. We further compute an
individual’s Recognition Score (RS), which quantifies how
well someone remembers previously seen objects:

(2)RS = P( Repeat Response | Repeat Trial )
− P( Repeat Response | Foil Trial )

Response Time Modeling
We model response times (RT) using a Linear Ballistic Ac-
cumulator model (LBA) (Brown & Heathcote, 2008). The
LBA is a powerful sequential sampling model that differs

from other sequential sampling models in the following criti-
cal ways: a) it can fit n responses (nAFC), b) it assumes that
evidence in favor of each alternative is accrued independently,
and c) that evidence accumulation itself is linear and noise-
less. The LBA does remarkably well in fitting response times
and recovers standard patterns in RT data (Brown & Heath-
cote, 2008).

We use the R package rtdists (Singmann et al., 2018) to im-
plement the LBA. We adhere to the assumptions of the most
simple LBA in that we allow each individual to have the same
starting point bias (A), evidence boundary (b, with b > A),
and non-decision time (t0). However, we allow for the drift
rates to vary by accumulator (3 accumulators for 3 response
types) and apply the scaling constraint that all drift rates must
sum to 1 (i.e. Σ3

i=1vi = 1). Drift rates are drawn from a Nor-
mal distribution which has a common standard deviation (sv)
across all three accumulators. We use Maximum Likelihood
Estimation (MLE) to fit all parameters to individual subjects.

Results
In Experiment 1, we excluded a total of 20 subjects (13 for
below chance accuracy, 7 for LDI scores below zero) result-
ing in a total of 255 subjects with valid data. In Experiment
2, we excluded a total of 10 subjects (5 for below chance ac-
curacy, 5 for LDI scores below zero) resulting in a total of 74
subjects with valid data.

Choice Behavior
In Experiment 1, individuals chose the correct response 71%
of the time. They were most often correct on Repeat trials
(40% of correct responses) and Foil trials (38 %), followed by
Lure trials (22%). In Experiment 2, individuals also chose the
correct response 71% of the time. They were most often cor-
rect on Repeat trials (39% of correct responses) and Foil trials
(38 %), followed by Lure trials (23%). LDIs were compara-
ble across experiments (medianE1,E2 = 0.37(.3), Figure 1).
Recognition scores were similarly comparable (medianE1 =
0.78(.16),medianE2 = 0.78(.19)).

Response Time Modeling
In Experiment 1, median (IQR) RTs for each response type
were as follows: Repeat = 1.14(0.42), Lure = 1.29(0.47),
and Foil = 1.16(0.46). In Experiment 2, median (IQR) RTs
for each response type were as follows: Repeat = 1.07(0.43),
Lure = 1.29(0.43), and Foil = 1.12(0.45).

Our LBA parameter inferences are presented in Table 1.
Both experiments show the highest median drift rate on the

Repeat accumulator, followed by the Foil accumulator, and
lastly the Lure accumulator. Both experiments show that sub-
jects have the same median response caution, which is often
defined as the difference between the boundary and starting
point (b−A, median = 0.28).

We next confirmed qualitatively that our model had
good descriptive adequacy. To do this, we over-
laid predicted RT quantiles on observed RT quantiles



Figure 1: Lure Discrimination Indices for both experiments
median(IQR) = 0.37(0.3).

Parameter Exp. 1 Exp. 2
Starting Point (A) 0.42(0.21) 0.45(0.28)
Boundary (b) 0.70(0.21) 0.73(0.27)
Non Decision Time (t0) 0.45(0.22) 0.39(0.20)
Drift: vRepeat 0.39(0.12) 0.39(0.13)
Drift: vLure 0.26(0.15) 0.27(0.13)
Drift: vFoil 0.36(0.06) 0.34(0.06)
Drift: Standard Deviation 0.24(0.32) 0.24(0.27)

Table 1: Maximum Likelihood Estimates (median(IQR)) for
LBA parameters for both experiments. We fit a total of 6
parameters and the seventh, drift rate for the Foil accumulator
is νFoil = 1−νRepeat −νLure.

(10%,30%,50%,70%,90%). We present an example of sub-
ject fits across ages and correct/incorrect responses in Figure
2, noting that most subjects were qualitatively well fit by the
data.

Relating LBA to MST
As our key question of interest focuses on relating LBA pa-
rameters (components of an individual’s memory retrieval
and recognition processes – in particular drift rates and
boundary) to how distinctly people encode memories, we
assessed whether there were any correlations between the
LBA parameters and behavioral scores (LDI and RS). We
report Kendall’s τ rank correlation coefficient in the follow-
ing analyses and adjust for multiple comparisons using the
Bonferroni-Holm correction.

We found significant correlations between drift rates and
LDI as shown in Figure 3. In particular, we found a negative
correlation between the drift rate for the Repeat Accumulator
and LDI in Experiment 1 (τKendall = −0.276, p < 0.01) and
Experiment 2 (τKendall = −0.20, p < 0.05) trials. We further

Figure 2: Example plots where observed quantiles are over-
laid with predicted quantiles for subjects old and young, cor-
rect and incorrect. Purple markers are observed RT quantiles
for repeat trials, red for lures, and green for foils. Black lines
are predictions from LBA. The horizontal vertical line repre-
sents the true proportion of repeat, lure, and foil trials ( 1

3 ).

found a positive correlation between the Lure Accumulator
drift rate and LDI in Experiment 1 (τKendall = 0.15, p < 0.01).
Finally, the correlations between drift rates for the Foil Accu-
mulator and LDIs in Experiment 1 or Experiment 2 were not
significant after adjusting for multiple comparisons.

We also observed a significant negative correlation
between response caution (b − A) and LDI (τKendall =
−0.14, p < 0.05) in Experiment 1 only.

Correlation Strengths To compare correlation strengths,
we used bootstrapping to resample the data and calculate
Kendall’s τs and the differences between each pair of τs (e.g.
τA − τb). We then examined whether the bootstrapped 95%
confidence interval distributions of the differences between
each pair of correlations included zero. If they did not include
zero, we interpreted this as evidence in favor of a non-zero
difference between the correlations compared.

Critically, we found that in Experiment 1, all three
of the bootstrapped distributions of correlation differences
between LDI and boundary, and LDI and the three ac-
cumulator drift rates did not include zero: boundary-
Repeat (0.0973,0.282), boundary-Lure (−0.492,−0.218),
boundary-Foil (−0.412,−0.1479), Figure 4. We note that
the CIs go in opposite directions for the Repeat vs Lure
and Foil accumulators because of the negative correlation be-
tween LDI and Repeat accumulator drift rates. These results
also held when we compared correlation strengths between
response caution and the three accumulator drift rates: re-
sponse caution-Repeat (0.054,0.265), response caution-Lure
(−0.456,−0.137), response caution-Foil (−0.397,−0.139).
In Experiment 2, however, all of the CIs contained
zero: boundary-Repeat (−0.139,0.298), boundary-Lure
(−.451,0.052), boundary-Foil (−0.350,0.105). Again, the



same held for response caution: response caution-Repeat
(−0.142,0.272), response caution-Lure (−0.312,0.101), re-
sponse caution-Foil (−0.345,0.125)

We also found that the correlations between the drift rate
accumulators and LDIs were significantly different in Exper-
iment 1. Specifically, the LDI-repeat accumulator thresholds
were stronger than the LDI-lure accumulator drift (-0.680, -
0.326) and the LDI-foil accumulator drift (-0.565,-0.309). We
further found that the correlation between LDI-lure accumu-
lator drift was stronger than the LDI-foil accumulator drift
(0.026,0.357). In Experiment 2, we only found that the LDI-
repeat accumulator drift correlation was significantly greater
than the LDI-foil accumulator drift (-0.381,-0.043).

Figure 3: Correlations between Accumulator drift rates and
the LDI across both experiments. We find statistically signif-
icant correlations between the drift rate of the Repeat accu-
mulator and LDI in both experiments (τE1 = −0.276, τE2 =
−0.26). We further find a significant correlation between the
drift rate of the Lure accumulator and LDI in Experiment 1
(τE1 = 0.15)

Stability of Measures
Given the correlation between LDI and drift rates in both ex-
periments, we wanted to see if the drift rate may in fact be a
more stable behavioral measure than LDI. To evaluate the sta-
bility of the fit parameters and behavioral measures, we per-
formed a split-halves analysis. Specifically, for each subject,
we separately estimated each parameter and metric of interest
on randomly selected halves of trials. We then computed the
Mean Square Error for all parameters fit (both in the response
time modeling and in choice behavior), Table 2. Specifically,

Figure 4: Boostrapped correlation differences between
boundary and LDI, and drift rate and LDI for the three differ-
ent accumulators in Experiment 1. All three 95% CIs do not
include zero: boundary-Repeat (0.0973,0.282), boundary-
Lure (−0.492,−0.218), boundary-Foil (−0.412,−0.1479).

we calculated LBA measures, LDI, and Recognition Scores
twice for for all odd numbered trials, and all even numbered
trials separately.

Parameter Exp.1 Exp. 2
Starting Point (A) 0.049(0.014) 0.045(0.023)
Boundary (b) 0.028(0.011) 0.034(0.020)
Non Decision Time (t0) 0.042(0.013) 0.112(0.036)
Drift: vRepeat 0.009(0.006) 0.026(0.017)
Drift: vLure 0.010(0.007) 0.019(0.015)
Drift: vFoil 0.007(0.005) 0.021(0.016)
Drift: Standard Deviation 0.04(0.013) 0.067(0.028)
Lure Discrimination Index 0.017(0.008) 0.034(0.020)
Recognition Score 0.008(0.006) 0.018(0.014)

Table 2: Mean square errors (Standard Error) for all param-
eters estimated by the LBA model and (below the line) for
standard behavioral measures derived from the MST.

Supporting the hypothesis that signal discrimination is a
stable measure within-individual, we found that the MSE of
the drift rates for all the accumulators were the lowest in both
experiments. We note that the degree of stability is an or-
der of magnitude greater than all the other parameters in Ex-
periment 1, the larger dataset with more trials per subject.
To quantify differences between MSE across LBA and be-
havioral parameters (i.e. stability in measurements), we use
the non-parametric paired Wilcoxon Rank Sum test and again
correct for multiple comparisons using the Bonferroni-Holm
correction. We found that the drift rates were more stable than
all other LBA parameters (p < 0.01) and both behavioral pa-
rameters (LDI, Recognition Score p < 0.01) in Experiment 1.
In Experiment 2, we found that drift rates were significantly
more stable than all the LBA parameters (p < 0.01) except



the non-decision time, which was trendingly significant after
correcting for multiple comparisons (0.05 < p < 0.08). How-
ever, like in Experiment 1, the drift rates were more stable
than both behavioral parameters (p < 0.01).

Discussion
We present one of the first model based analysis of response
times in the Mnemonic Similarity Task (MST). We use a sim-
ple sequential sampling model, the Linear Ballistic Accumu-
lator (LBA), where evidence is accumulated independently
for all three possible responses.

Our approach decomposed responses for this task into sep-
arable components of response execution and signal detec-
tion, allowing us to assess the individual stability of these pro-
cesses, across subjects. We hypothesized that either or both
the response caution (either boundary, b, alone or boundary
minus starting point, b−A) or drift rate,vi, to lure or foil trials
would be key variables of interest for behavioral discrimina-
tion performance. Specifically, if the LDI is indeed a measure
of pattern separation, we would expect higher drift rates on
Lure and/or Foil accumulators, suggesting a boosted signal.
At the same time, to the extent LDI reflects individual vari-
ability in response caution, boundary, or starting point bias,
then this would be reflected in these terms.

We found that, although both parameters were significantly
correlated with LDI, the drift rates were both a stronger pre-
dictor of the standard behavioral measure and also a more
stable within-subject measurement. The latter point is of con-
siderable interest given the extensive evidence that MST is a
useful individual difference marker, predicting neurological
dysfunction and cognitive performance in a wide variety of
clinical and laboratory measures (Stark et al., 2019).

The finding that LDI is strongly influenced by evidence
strength supports the suggestion that MST measures the de-
gree of pattern separation underlying these responses. Fur-
ther, our findings may enhance the application of MST in sev-
eral ways. First, the finding that drift rates are a more stable
within-subject measure suggests that it could be used to more
finely predict the same sorts of outcomes currently predicted
by LDI. Future work should examine the correspondence of
this drift rate to cognitive and neurological outcomes of inter-
est. Second, the use of sequential sampling models can enable
extracting trial-by-trial timeseries reflecting putative underly-
ing computations that drive behavior, which should support
analysis of more precisely defined functional neuroimaging
measures (Long et al., 2016). Finally, the robust statistical
frameworks often used to fit these sorts of models may al-
low further refinement of the approach, producing even more
stable trait-level estimates by, e.g., incorporating informative
priors and models of contaminant behavior.

In sum, we have provided initial evidence that joint mod-
eling of choices and response times can improve inference
of trait-level properties underlying a widely used clinical and
laboratory assessment tool. Future work will examine the ro-
bustness of this new metric in the many settings in which the

MST has been applied.
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