
Comparing Cognitive, Cognitive Instance-Based, and Reinforcement Learning

Models in an Interactive Task

Amir Bagherzadehkhorasani (amir.bagherzadeh@psu.edu)
Department of Industrial and Manufacturing Engineering, Penn State, University Park, PA 16802 USA

Farnaz Tehranchi (farnaz.tehranchi@psu.edu)
School of Engineering Design, Technology and Professional Programs, Penn State, University Park, PA 16802 USA

Abstract

This work tries to answer fundamental questions of learning
bias in cognitive models, how decision-making strategies in
different cognitive models vary and why. Using a biased coin
in a coin flip game, we study the number of trials it takes for
each cognitive model to learn the asymmetry in the coin. Also,
we investigate how the model behaves knowing the
asymmetry. A web-based game is designed to simulate coin
flipping to collect the models' data. The most common
approaches to model the decision-making process are used for
this study. Cognitive architectures such as ACT-R and PyIBL
with the capability of learning and making decisions are used
and compared. Also, we consider Reinforcement Learning
with different decision-making strategies such as Thompson
Sampling, Boltzmann Exploration, and Epsilon Greedy
algorithm. All developed models interact with the task
environment and complete the task. To facilitate the interaction
between the models and the game’s interface, we developed a
new tool called VisiTor. VisiTor grants cognitive models the
ability to gain information and execute actions in dynamic
environments. The results show models are capable of
replicating human’s main decision-making strategies:
matching and maximizing.

Keywords: ACT-R; cognitive modeling; reinforcement
learning; instance-based learning; binary choice experiments;
decision-making

Introduction

The most commonly used method to study human decision-

making procedures consists of observing human performance

in a choice task and proceeding with developing a cognitive

model. These models emulate human behavior (Cassimatis,

Bello, & Langley, 2008); Erev et al. (2005) discussed the

learning process with immediate feedback, which consists of

different processes such as the tradeoffs of adaptation and

maximization in repeated choice tasks. They proposed a

Reinforcement Learning model alongside the cognitive

strategies to consider the payoff variability and other

deviations. Janssen et al. (2012) also utilized ACT-R to study

the effect of the reward value. They suggested a new

approach to determine the reward that is experienced in the

environment. Lebiere et al. (2007) used Instance-Based

Learning (IBL) to demonstrate that a binary choice problem

with immediate feedback does not always lead to payoff

maximization. One of the factors that limits the studies to

explore more complicated choice tasks is the restricted

cognitive models' capability to interact with task

environments. ACT-R is a hybrid cognitive architecture that

is consisted of a set of programmable information-processing

mechanisms. These mechanisms are used to predict and

explain human behavior, including cognition and interaction

with the environment (J. R. Anderson et al., 2004; Ritter,

Tehranchi, & Oury, 2018; Tehranchi & Ritter, 2018a). Ever

since the emergence of ACR-R in 1998 (John R Anderson,

Bothell, Lebiere, & Matessa, 1998), several researchers have

utilized ACT-R capabilities to simulate human interaction

and cognition while performing a specific task (Cao, Ho, &

He, 2018; Gray, Schoelles, & Sims, 2005; Hope, Schoelles,

& Gray, 2014). ACT-R models typically interact with the

world through ACT-R's device interface, an abstract

representation of the world based on a simulated Lisp

environment provided with ACT-R or by instrumenting

interfaces. However, these interactions are limited to being

applied to an unmodified ACT-R environment in special

windows provided by ACT-R. In other words, if the

environment that a model is interacting with is subject to

change, the model will not be able to work properly. PyIBL

is a Python implementation of a subset of Instance-Based

Learning Theory (Gonzalez, Lerch, & Lebiere, 2003). PyIBL

does not have a built-in capability to interact with any

environment.

Inspired by JSegMan, SegMan, and ACT-CV (Halbrügge,

2013; St. Amant, Riedel, Ritter, & Reifers, 2005; Tehranchi

& Ritter, 2018b), we developed VisiTor (Vision+Motor) that

generates the required interactions in dynamic task

environments. VisiTor simulates users' visual attention

(vision) and use of a mouse and keyboard (Motor). This tool

allows ACT-R and PyIBL to interact with any environment

while keeping the operations similar to users as close as

possible and its capabilities are expandable.

Probability Learning and Decision-Making in

Psychology Literature

Unknown bias effects on decision-making and prediction of

the next outcome using a binary choice prediction task have

been studied before. Bilda, Gero, and Sun (2006) conducted

a simulation modeling bias for a pitch in baseball. Altmann

and Burns (2005) studied the effect of streaks in coin flips on

the prediction of the next toss. In binary choice experiments,

participants are asked on each trial to predict the outcome of

an event such as a coin flip. The outcome is usually biased

towards one of the choices, and participants are not informed

of the bias. Altmann et al. (2005) claimed that participants

tend to adapt their behavior to the relative reward accordingly

instead of maximizing the expected reward. In another word,

they try to "match" rather than "maximize." In matching,

participants’ choices would reflect bias in the coin, while in

maximizing, the participants would maximize the reward by

choosing the option with a higher probability of success.

Assume in a coin flip game that the ratio of head and tail is 3

to 1. While matching, Participants predict heads on roughly

75% of trials by the end of a session. Whereas in the optimal

strategy, one should choose head 100 percent of the trials to

maximize the number of wins, once they detect the bias. This

aligns with (Vulkan, 2000) results. Such behavior is

paradoxical because matching results in less reward receipt

than maximizing. This is because participants cannot know

when a given location or response option will be rewarded,

even if they are aware of the overall reward rate.

The effects of age in the strategy taken after learning the

bias has been a subject of conflict among Probability

Learning studies. The ratio of school-age children

demonstrating matching strategy is similar to the ratio of

adults using the matching strategy (Brackbill & Bravos,

1962; Derks & Paclisanu, 1967). Also, Younger children

(ages 3–5 years) demonstrate maximizing more than older

children (Plate, Fulvio, Shutts, Green, & Pollak, 2018). While

Moran III and McCullers (1979) have found that adults

maximize rewards more effectively than children. Recently,

Plate et al. (2018) conducted a comprehensive study on adults

and children. They compared their results to 4 different

decision-making models: Random model, Matching model,

Maximizing model and a combination of the last two

(Combination model). Most adults and children's results

matched the Combination model based on their study,

suggesting participants exhibited matching behavior at the

outset of the experiment and then crossed over to maximizing

in the experiment. All participants who did not crossover

from matching to maximizing were the best fit by the

probability Matching model and are sensitive to the

underlying probabilities. In summary, all researchers agree

that people can identify the bias if the bias is significant

enough. However, how they react to the bias is still a subject

of discussion.

Probability Learning and Decision-Making in

Artificial Intelligence Literature

Probability Learning and decision-making models are not

following the same strategy when taking an action. Most of

Reinforcement Learning models learn the outcome

distribution of each action by using posterior distribution

over the outcome of each action. These models seek to find

the best possible action for each scenario (Zhu, 2018). On the

other hand, cognitive models do not necessarily look for the

best action. Instead, they try to simulate human behaviors in

the same scenario, regardless of the optimality of choice

(Lebiere et al., 2007). In line with psychology literature,

cognitive models have different strategies for decision-

making. Reinforcement Learning models and cognitive

models are capable of imitating both matching and

maximizing decision-making strategies.

Agents, developed using Reinforcement Learning (RL),

interact with a task environment and generally learn to

maximize their rewards (Sutton & Barto, 2018). These agents

discover which actions to take to generate the highest

possible rewards.

The Reinforcement Learning model discovers the right set

of actions to take by trial and error. By observing the result

after each instance, the model learns the outcome distribution

of the actions. There are two important components in

learning the outcome distribution of each choice: (a) how to

update the outcome distribution based on the action taken,

and (b) what action to take. The reward function is the

cornerstone of the learning aspect of RL models. It maps each

action to the outcome. The environment's characteristics,

such as the delay between taking an action and observing the

outcome and the possible outcome distributions, can affect

how the reward function is defined (Guo, 2017). Deep

Reinforcement Learning models replace the reward function

with a Neural Network and let the model determine the best

reward function (Li, 2017).

Decision-making strategies such as the Greedy algorithm

results in maximizing, Boltzmann Exploration results in

matching, and Thompson Sampling (Thompson, 1933)

results in the combination of matching and maximizing

behavior.

 Due to this limitation of greedy algorithms, several

methods have been developed to add exploration through

randomly perturbing actions that a greedy algorithm would

select (Dabney, Ostrovski, & Barreto, 2020; Masadeh, Wang,

& Kamal, 2018; Tokic, 2010). These methods are called

Dithering. The most basic Dithering method is called Epsilon

Greedy Exploration. This method applies the greedy action

with probability 1 − ε and otherwise selects an action

uniformly at random. Although this type of exploration

improves the performance of the greedy algorithm, it wastes

resources by trying all the actions, even those that are

unlikely to generate a better reward than what we already

have. For example, half of the exploration is wasted by trying

action 2. This issue gets worse as the number of actions

increases.

Thompson Sampling was introduced more than 80 years

ago (Thompson, 1933). This method provides an alternative

to dithering that more intelligently allocates the exploration

effort. In this method, a Beta distribution with (α = 1, β = 1)

is initially assumed for each action. At each instance, we

sample from each action’s distribution. Whichever action

gives us the largest sample value will be chosen. After the

action is taken and the result is observed. If it is a success, α

is increased by one. Otherwise, β is increased by one. This

process will be repeated each time an action needs to be

taken.

Boltzmann Exploration utilizes a similar strategy of

decision-making to ACT-R. The actions are taken

stochastically. Initially, the reward for all actions is assumed

to be equal. At each trial, the probability of taking an action

i, is calculated as follows:

𝑃𝑖 =
𝑒𝑈𝑖/𝑇

∑ 𝑒𝑈𝑖/𝑇𝑖∈𝑚

where m is the set of all actions. The action is going to be

taken based on a discrete distribution with probabilities

calculated from this equation. After each trial, the

expected rewards for all actions are updated. This equation

indicates that as the chance of actions being taken is

proportional to the values of 𝑈𝑖/𝑇.

The parameter T is known as temperature. It controls the

randomness of the action. The higher the value of T, the

more randomness happens in action selection.

Methodology

In this study, we considered a simple coin flip game. Every

round, participants and models choose either head or tail. If

their choice matches the game's choice, the result is winning

the round and a message “Match” will show up. If the choices

do not match, the result is losing that round and a message

“Wrong” will show up. The probabilities of the computer

choosing head or tail are not equal. In 70 percent of the

occurrences, head will appear, and the tail will appear in 30

percent of the trials. This game is an online browser game and

is written in C# and was first used by (Tehranchi & Ritter,

2020) to study the number of trials needed for ACT-R to

match the probability of the biased coin. Figure 1 shows a

screenshot of the game when a user starts playing. The

models’ data of interactions with the game and their final

decisions are saved.

Figure 1: The game environment. It consists of a feedback

area (where the "Ready" sign is shown) and visual objects

(Head and Tail buttons). The feedback area will be changed

based on the result of the played round. It shows "Match" if

the choice is correct, and it shows "Wrong" if the choice is

incorrect.

The Coin flip game is played in an interactive environment.

In this environment, the interface is susceptible to change if

the user provides input. Every time a model chooses what to

play for that round and clicks on the buttons. The feedback

area is going to change. Also, the model continues to work

even if the location of the environment window is moved.

And because of that, the visual module implemented in ACT-

R cannot be used for this task.

The ACT-R Model

ACT-R’s actions that play the game can be broken down into

several subtasks. Each subtask consists of some production

rules that ACT-R uses to play the Coin flip game.

Every visual object on display will be represented by a set of

unique features for the visual module. Chucks are created by

these features that provide declarative memory, the

representation of the visual scene by the vision module.

These chucks are visual location and visual object types.

Production rules' constraints can match the chunks. The

model consists of 3 visual objects, “Ready”, “Heads”, and

“Tail”, in addition to 15 declarative memory chunks and 12

production rules. Production rules execute shifting attention,

finding the ready icon to start, choosing heads or tail,

clicking, finding the visual feedback, and assigning reward

value to the results. The reward value for matching is 6 and

in case of wrong, the reward value of zero is assigned. The

Utility Value and the sub-symbolic computations parameter

are set to true. The value of temperature varies based on the

decision-making strategy we are trying to replicate. All the

other parameters are set to default.

Starting the Game

The model looks for the visual object "ready". If it finds it,

the model is ready to choose an action. At this point, the

reward (Utility) function for all the choices is equal.

Taking an Action

Based on the reward function, the model will take an action,

retrieves the visual object corresponding to that action, moves

the cursor to the visual location, and clicks. Each action has

a probability of being taken. The probability for action i is

calculated using the Boltzmann Equation:

Probability(𝑖) =
𝑒𝑈𝑖/√2𝑠

∑ 𝑒𝑈𝑗/√2𝑠𝑗∈𝑚

Where the summation j is over all the productions which

currently meet the conditions required. ACT-R multiplies the

temperature value (T in Boltzmann Equation) by the square

root of two.

After the model decides what action to take, the model needs

to find the visual object corresponding to that action and

select (click) it. For this task, VisiTor first finds the location

of the visual objects on the screen by Template Matching

capability of the OpenCV Python library. The templates are

predefined and saved as an image. Then, VisiTor will save

that visual object as an image. In order to assure than VisiTor

is robust to rescaling and size, different sizes of the template

are checked. Then, VisiTor moves the mouse to the location

of that object and clicks.

Looking for Feedback

After taking an action, the model expects feedback. The

model tries to find which of the feedback visual objects is

shown on the screen. The model first retrieves them into the

memory module and then utilizes VisiTor. VisiTor search for

the feedback visual object that is appearing on the screen.

Updating the Reward Function

Based on the feedback, the model updates the reward

function for the action taken in the last step.

𝑈𝑖(𝑛) = 𝑈𝑖(𝑛 − 1) + α[ 𝑅𝑖(𝑛) − 𝑈𝑖(𝑛 − 1)]
Where:

• α is the learning parameter

• 𝑅𝑖(𝑛) is the effective reward value given to

production i for its nth usage

• 𝑈𝑖(0) is the initial utility value for production i

Then the model goes back to the Taking an action section and

repeats the whole process.

Similar to ACT-R, RL models follow the same set of

actions to play the game. The only difference is how the

reward function is updated and the decision-making strategy.

Here, we tried Epsilon Greedy, Boltzmann Exploration,

Thompson Sampling, and PyIBL to analyze the differences.

In this section, we will elaborate on the decision-making

process of each model and what decision-making strategy

they utilize in the coin flip game.

PyIBL Model

PyIBL uses the concept of blending to calculate the utility

value of each choice in its decision-making process (Lebiere,

1999). The blending mechanism consists of activation, base

level activation, weights, utilities, noise, and temperature.

Activation

A fundamental part of retrieving an instance from the PyIBL

model’s memory is computing the activation of that instance.

The value of the activation is based on (a) how frequently and

recently it has been experienced by the model and (b) how

well it matches the attributes of what is to be retrieved. The

activation is calculated based on the following formula:

𝐴𝑖 = 𝐵𝑖 + 𝜖𝑖
Where:

• 𝐴𝑖: Activation of chunk i. It is also called “match

score” 𝑀𝑖

• 𝐵𝑖: This is the base-level activation and reflects the

recency and frequency of use of the chunk. We

elaborate on this and how to calculate this more

• 𝜖𝑖: A noise value

Base Level

The base-level activation, 𝐵𝑖 , describes the frequency and

recency of the chunk i. Its value depends upon the decay

parameter of Memory, d. The base level activation is

computed using the amount of time that has elapsed since

each of the past appearances of i, which in the following are

denoted as the various 𝑡𝑖𝑗.

𝐵𝑖 = ln⁡ (∑𝑡𝑖𝑗
−𝑑

𝑗

)

Activation Noise

The activation noise, 𝜖𝑖, implements the stochasticity of

retrievals from Memory. It is sampled from a logistic

distribution centered on zero. It is normally resampled each

time the activation is computed.

Blending

A weight is calculated for chunks using their corresponding

activation values to present the contribution of chunks in the

blending value.

𝑤𝑖 = 𝑒
𝐴𝑖
𝜏

With the activation values calculated for all the chunks

corresponding to an action, the blending value is calculated

as follows:

𝐵𝑉 = ∑
𝑤𝑖

∑ 𝑤𝑗𝑗∈𝑚

𝑢𝑖
𝑖∈𝑚

Lastly, the action with the largest blending value is taken. If

the outcome is already represented by a chunk, the base level

activation will be updated. If not, a chunk will be created to

represent the outcome in the next blending equation.

Deep Reinforcement Learning

First, a Neural Network predicts the outcome of each action

based on the instances the model has seen so far. After each

trial, the outcome is observed. Using the observed outcome,

the model tries to tune the Neural Network parameters to

predict the outcome more accurately. The loss function for

the Reinforcement Learning model is defined as follows:

L  =  E[( U(s, a; ⁡𝜃𝑘) − U(s, a))2]
Where the first term is the Neural Network predicted reward

function and the second term is the actual reward observed

by the model. 𝜃 represents the Neural Network parameter.

To take an action, the model predicts the reward value for all

actions. The reward values are important for all decision-

making strategies. Different actions might be taken

depending on what decision-making strategy is used. Figures

2 and 3 show the flow chart of how Epsilon Greedy and

Thompson Sampling play the coin flip game.

Results

The reward value that is assigned to match or wrong visual

objects is an important factor in models’ convergence. In case

of a small difference between the reward of a match and

wrong, all models fail to learn bias and fail to show any

decision-making strategy. With a proper choice of reward

value, all the models show that they are capable of learning

the bias in less than 200 trials. Both ACT-R and PyIBL are

capable of implementing matching and maximizing decision-

making strategies. Figure 4 shows the effect of temperature

on the decision-making strategy of the PyIBL model. For

figure 4.a, the temperature value was set to one and for figure

4.b, the temperature was set to 14. For small values of

temperature, the PyIBL model will choose the maximizing

strategy. As the value of temperature increases, the decision-

making strategy move towards matching. If the value of the

temperature is set too high, the PyIBL agent will decide

completely random (i.e., 50 percent of the time, the PyIBL

model chooses head, and 50 percent of the time, it chooses

tail).

Figure 5 shows the effect of temperature on the decision-

making strategy of the ACT-R model. Figure 5.a displays the

proportion of head and tail chosen by ACT-R if the

temperature is set to 3. In Figure 5.b, the temperature was set

to 0.5.

Figure 2: The flowchart for the Epsilon Greedy algorithm

contains five processes and one conditional operation. In

each step, with the probability of Epsilon, the model takes a

random action. Otherwise, it will select the action with the

highest predicted utility value.

Figure 3: Thompson Sampling Flowchart contains four

processes. The beta distribution is assigned to each choice.

At the beginning of the training, all parameters are equal to

1. Meaning that the model assumes that parameters are all

likely to generate an optimum result. At each step, samples

are taken from each action distribution. The biggest sample

determines what action should be taken. Then based on the

result, the distribution of the action taken is updated.

Similar to PyIBL, smaller values of temperature will result in

maximization and as the value of temperature increases, the

randomness of choices will increase. ACT-R shows more

sensitivity to the value of the temperature in comparison to

PyIBL. Meaning smaller changes in the value of temperature

in ACT-R will result in more noticeable shifts in decision-

making strategy.

Figure 6 shows the Epsilon Greedy maximizes the utility

by only taking actions with the highest reward. This is exactly

what is expected from this model. The Deep Reinforcement

Learning with Epsilon Greedy decision-making strategy is

designed to maximize the reward. The experiment shows that

the maximizing behavior of the model has started after the

fourth trial (where the reward value of the head became larger

than the tail). A bad sequence of random occurrences might

result in the model taking the wrong action as the maximizing

action and may not be able to recover.

Figure 4: Probability of choosing Head (Blue) and Tail

(Orange) over 200 trials by PyIBL in the case of (a)

maximizing and (b) matching with different temperatures.

Figure 5: Probability of choosing Head (Blue) and Tail

(Orange) over 200 trials by ACT-R in the case of (a)

maximizing and matching (b) using different temperatures.

Figure 7 suggests that Thompson Sampling started with

matching and then maximized after gaining confidence that

the estimated reward value of the head is larger than the tail.

Figure 8 shows the decision-making by Deep Reinforcement

Learning with Boltzmann Exploration. With the right value

of temperature, this model can imitate both matching and

maximizing behaviors. In summary, all the models that

utilized the Boltzmann Equation in their action taking

(decision-making) strategy (ACT-R, PyIBL and Deep

Reinforcement Learning), are capable of both matching and

maximizing. Epsilon Greedy decision-making strategy

always results in maximizing. Thompson Sampling first

matches the probability of the coin and when it is confident

in the reward of the head is greater than the tail, it starts to

maximize the reward by choosing heads.

Figure 6: Probability of choosing Head (Blue) and Tail

(Orange) over 200 trials by Deep Reinforcement Learning

with Epsilon Greedy decision-making strategy.

Figure 7. Probability of choosing Head (Blue) and Tail

(Orange) over 200 trials by Reinforcement Learning with

Thompson Sampling decision-making strategy.

Conclusion

We analyzed different models such as ACT-R, PyIBL,

Reinforcement Learning with the Epsilon Greedy algorithm,

Boltzmann Exploration, and Thompson Sampling decision-

making strategies. We studied the models’ capabilities to

learn the bias and how they take an action. A web-based

biased coin flip game was developed where models can

interact and predict the next coin flip’s result.

The outcome of the coin flip game (i.e., match or wrong

visual objects) will be shown in the game environment. We

introduced VisiTor, a Python-based tool that can facilitate the

interaction between different models and task environments

in any programming languages.

The models utilized two main strategies to choose what

action to take. They can "Maximize," meaning they can select

the choice they believe has the highest probability of success

and maximize their outcome. Or they "Match" the probability

of the actions. We showed that among the well-known

cognitive architectures and algorithms, ACT-R, PyIBL and

Deep Reinforcement Learning with Boltzmann Exploration

are capable of imitating all decision-making strategies by

setting the right set of parameters.

Figure 8: Probability of choosing Head (Blue) and Tail

(Orange) over 200 trials by Deep Reinforcement Learning

with Boltzmann Exploration.

Epsilon Greedy and Thompson Sampling tend to "Maximize"

before the 200th trial. However, Thompson Sampling tends to

"Match" at the beginning and then it will "Maximize" the

reward. The behavioral studies in this area believe people are

using the same set of strategies. However, which strategy is

used in what situations is still a topic of conflict. A more

systematic study needs to be conducted to show under what

circumstances people tend to minimize or maximize. Based

on the result, we will be able to see which model can simulate

human behavior and under what circumstances.

Future Works

In order to determine which model is behaving closest to

humans, a study needs to be conducted to analyze human

behavior. Models that utilize the Boltzmann Equation in their

decision-making strategy, can be tuned to Match or

Maximize. Behavioral studies in this area indicate mixed

results and may vary case by case. A systematic review is

needed in this area to categorize the results and analyze the

reason behind the mixed results that are reported by the

studies previously done to analyze human behavior. This

experiment needs to be conducted to determine if humans

tend to match, maximize, or combination of both.

Also, currently, visual objects need to be predefined for

VisiTor. A possible extension for VisiTor is to further extend

its capabilities by having the model define the visual objects

based on the human eye movement data. Users tend to pay

closer attention to the visual objects they utilize to play. In

the next version of VisiTor, we plan to have the model detect

visual objects based on the eye-tracking data.

Acknowledgments

The Pennsylvania State University supports this work. We

would like to thank Dan Bothell, Don Morrison, and

Genevieve Gordon for their assistance.

References

Altmann, E. M., & Burns, B. D. (2005). Streak biases in

decision making: Data and a memory model. Cognitive

Systems Research, 6(1), 5-16.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of

the mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.

(1998). An integrated theory of list memory. Journal of

Memory and Language, 38(4), 341-380.

Brackbill, Y., & Bravos, A. (1962). Supplementary report:

The utility of correctly predicting infrequent events.

Journal of Experimental Psychology, 64(6), 648.

Cao, S., Ho, A., & He, J. (2018). Modeling and predicting

mobile phone touchscreen transcription typing using an

integrated cognitive architecture. International Journal

of Human–Computer Interaction, 34(6), 544-556.

Cassimatis, N. L., Bello, P., & Langley, P. (2008). Ability,

breadth, and parsimony in computational models of

higher‐order cognition. Cognitive Science, 32(8), 1304-

1322.

Dabney, W., Ostrovski, G., & Barreto, A. (2020).

Temporally-extended {\epsilon}-greedy exploration.

arXiv preprint arXiv:2006.01782.

Derks, P. L., & Paclisanu, M. I. (1967). Simple strategies in

binary prediction by children and adults. Journal of

Experimental Psychology, 73(2), 278.

Erev, I., & Barron, G. (2005). On adaptation, maximization,

and reinforcement learning among cognitive strategies.

Psychological Review, 112(4), 912.

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance‐

based learning in dynamic decision making. Cognitive

Science, 27(4), 591-635.

Gray, W. D., Schoelles, M. J., & Sims, C. R. (2005).

Adapting to the task environment: Explorations in

expected value. Cognitive Systems Research, 6(1), 27-

40.

Guo, X. (2017). Deep learning and reward design for

reinforcement learning.

Halbrügge, M. (2013). ACT-CV: Bridging the gap between

cognitive models and the outer world. Grundlagen und

Anwendungen der Mensch-Maschine-Interaktion, 10,

205-210.

Hope, R. M., Schoelles, M. J., & Gray, W. D. (2014).

Simplifying the interaction between cognitive models

and task environments with the JSON Network

Interface. Behavior Research Methods, 46(4), 1007-

1012.

Janssen, C. P., & Gray, W. D. (2012). When, what, and how

much to reward in reinforcement learning‐based models

of cognition. Cognitive Science, 36(2), 333-358.

Lebiere, C. (1999). Blending: An ACT-R mechanism for

aggregate retrievals. Paper presented at the Proceedings

of the Sixth Annual ACT-R Workshop, George Mason

University, Fairfax, VA, USA.

Lebiere, C., Gonzalez, C., & Martin, M. (2007). Instance-

based decision making model of repeated binary choice.

Retrieved from

Li, Y. (2017). Deep reinforcement learning: An overview.

arXiv preprint arXiv:1701.07274.

Masadeh, A. e., Wang, Z., & Kamal, A. E. (2018).

Convergence-based exploration algorithm for

reinforcement learning. Electrical and Computer

Engineering Technical Reports and White Papers, 1.

Moran III, J. D., & McCullers, J. C. (1979). Reward and

number of choices in children's probability learning: An

attempt to reconcile conflicting findings. Journal of

Experimental Child Psychology, 27(3), 527-532.

Plate, R. C., Fulvio, J. M., Shutts, K., Green, C. S., & Pollak,

S. D. (2018). Probability learning: Changes in behavior

across time and development. Child development, 89(1),

205-218.

Ritter, F. E., Tehranchi, F., & Oury, J. D. (2018). ACT-R: A

cognitive architecture for modeling cognition. Wiley

Interdisciplinary Reviews: Cognitive Science, e1488.

St. Amant, R., Riedel, M. O., Ritter, F. E., & Reifers, A.

(2005). Image processing in cognitive models with

SegMan (Vol. 4). Mahwah, NJ: Erlbaum.

Tehranchi, F., & Ritter, F. E. (2018a). Modeling visual search

in interactive graphic interfaces: Adding visual pattern

matching algorithms to ACT-R. Paper presented at the

Proceedings of ICCM-2018-16th International

Conference on Cognitive Modeling.

Tehranchi, F., & Ritter, F. E. (2018b). Using Java to provide

cognitive models with a more universal way to interact

with graphical user interfaces. Paper presented at the

2018 International Conference on Social Computing,

Behavioral-Cultural Modeling, and Prediction and

Behavior Representation in Modeling and Simulation,

BRiMS 2018.

Tehranchi, F., & Ritter, F. E. (2020). Extending JSegMan to

Interact with a Biased Coin Task and a Spreadsheet

Task. Paper presented at the 17th International

Conference on Cognitive Modeling, ICCM 2019.

Thompson, W. R. (1933). On the likelihood that one

unknown probability exceeds another in view of the

evidence of two samples. Biometrika, 25(3-4), 285-294.

Tokic, M. (2010). Adaptive ε-greedy exploration in

reinforcement learning based on value differences.

Paper presented at the Annual Conference on Artificial

Intelligence.

Vulkan, N. (2000). An economist’s perspective on

probability matching. Journal of economic surveys,

14(1), 101-118.

Zhu, J. (2018). Probabilistic Machine Learning: Models,

Algorithms and a Programming Library. Paper

presented at the IJCAI.

