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Abstract 

This work tries to answer fundamental questions of learning 
bias in cognitive models, how decision-making strategies in 
different cognitive models vary and why. Using a biased coin 
in a coin flip game, we study the number of trials it takes for 
each cognitive model to learn the asymmetry in the coin. Also, 
we investigate how the model behaves knowing the 
asymmetry. A web-based game is designed to simulate coin 
flipping to collect the models' data. The most common 
approaches to model the decision-making process are used for 
this study. Cognitive architectures such as ACT-R and PyIBL 
with the capability of learning and making decisions are used 
and compared. Also, we consider Reinforcement Learning 
with different decision-making strategies such as Thompson 
Sampling, Boltzmann Exploration, and Epsilon Greedy 
algorithm. All developed models interact with the task 
environment and complete the task. To facilitate the interaction 
between the models and the game’s interface, we developed a 
new tool called VisiTor. VisiTor grants cognitive models the 
ability to gain information and execute actions in dynamic 
environments. The results show models are capable of 
replicating human’s main decision-making strategies: 
matching and maximizing.  

Keywords: ACT-R; cognitive modeling; reinforcement 
learning; instance-based learning; binary choice experiments; 
decision-making  

Introduction   

The most commonly used method to study human decision-

making procedures consists of observing human performance 

in a choice task and proceeding with developing a cognitive 

model. These models emulate human behavior (Cassimatis, 

Bello, & Langley, 2008); Erev et al. (2005) discussed the 

learning process with immediate feedback, which consists of 

different processes such as the tradeoffs of adaptation and 

maximization in repeated choice tasks. They proposed a 

Reinforcement Learning model alongside the cognitive 

strategies to consider the payoff variability and other 

deviations. Janssen et al. (2012) also utilized ACT-R to study 

the effect of the reward value. They suggested a new 

approach to determine the reward that is experienced in the 

environment. Lebiere et al. (2007) used Instance-Based 

Learning (IBL) to demonstrate that a binary choice problem 

with immediate feedback does not always lead to payoff 

maximization. One of the factors that limits the studies to 

explore more complicated choice tasks is the restricted 

cognitive models' capability to interact with task 

environments. ACT-R is a hybrid cognitive architecture that 

is consisted of a set of programmable information-processing 

mechanisms. These mechanisms are used to predict and 

explain human behavior, including cognition and interaction 

with the environment (J. R. Anderson et al., 2004; Ritter, 

Tehranchi, & Oury, 2018; Tehranchi & Ritter, 2018a). Ever 

since the emergence of ACR-R in 1998 (John R Anderson, 

Bothell, Lebiere, & Matessa, 1998), several researchers have 

utilized ACT-R capabilities to simulate human interaction 

and cognition while performing a specific task (Cao, Ho, & 

He, 2018; Gray, Schoelles, & Sims, 2005; Hope, Schoelles, 

& Gray, 2014). ACT-R models typically interact with the 

world through ACT-R's device interface, an abstract 

representation of the world based on a simulated Lisp 

environment provided with ACT-R or by instrumenting 

interfaces. However, these interactions are limited to being 

applied to an unmodified ACT-R environment in special 

windows provided by ACT-R. In other words, if the 

environment that a model is interacting with is subject to 

change, the model will not be able to work properly. PyIBL 

is a Python implementation of a subset of Instance-Based 

Learning Theory (Gonzalez, Lerch, & Lebiere, 2003). PyIBL 

does not have a built-in capability to interact with any 

environment.  

Inspired by JSegMan, SegMan, and ACT-CV (Halbrügge, 

2013; St. Amant, Riedel, Ritter, & Reifers, 2005; Tehranchi 

& Ritter, 2018b), we developed VisiTor (Vision+Motor) that 

generates the required interactions in dynamic task 

environments. VisiTor simulates users' visual attention 

(vision) and use of a mouse and keyboard (Motor). This tool 

allows ACT-R and PyIBL to interact with any environment 

while keeping the operations similar to users as close as 

possible and its capabilities are expandable.  

Probability Learning and Decision-Making in 

Psychology Literature 

Unknown bias effects on decision-making and prediction of 

the next outcome using a binary choice prediction task have 

been studied before. Bilda, Gero, and Sun (2006) conducted 

a simulation modeling bias for a pitch in baseball. Altmann 

and Burns (2005) studied the effect of streaks in coin flips on 

the prediction of the next toss. In binary choice experiments, 

participants are asked on each trial to predict the outcome of 

an event such as a coin flip. The outcome is usually biased 

towards one of the choices, and participants are not informed 

of the bias. Altmann et al. (2005) claimed that participants 

tend to adapt their behavior to the relative reward accordingly 



instead of maximizing the expected reward. In another word, 

they try to "match" rather than "maximize." In matching, 

participants’ choices would reflect bias in the coin, while in 

maximizing, the participants would maximize the reward by 

choosing the option with a higher probability of success. 

Assume in a coin flip game that the ratio of head and tail is 3 

to 1. While matching, Participants predict heads on roughly 

75% of trials by the end of a session. Whereas in the optimal 

strategy, one should choose head 100 percent of the trials to 

maximize the number of wins, once they detect the bias. This 

aligns with (Vulkan, 2000) results. Such behavior is 

paradoxical because matching results in less reward receipt 

than maximizing. This is because participants cannot know 

when a given location or response option will be rewarded, 

even if they are aware of the overall reward rate. 

The effects of age in the strategy taken after learning the 

bias has been a subject of conflict among Probability 

Learning studies. The ratio of school-age children 

demonstrating matching strategy is similar to the ratio of 

adults using the matching strategy (Brackbill & Bravos, 

1962; Derks & Paclisanu, 1967). Also, Younger children 

(ages 3–5 years) demonstrate maximizing more than older 

children (Plate, Fulvio, Shutts, Green, & Pollak, 2018). While 

Moran III and McCullers (1979) have found that adults 

maximize rewards more effectively than children. Recently, 

Plate et al. (2018) conducted a comprehensive study on adults 

and children. They compared their results to 4 different 

decision-making models: Random model, Matching model, 

Maximizing model and a combination of the last two 

(Combination model). Most adults and children's results 

matched the Combination model based on their study, 

suggesting participants exhibited matching behavior at the 

outset of the experiment and then crossed over to maximizing 

in the experiment. All participants who did not crossover 

from matching to maximizing were the best fit by the 

probability Matching model and are sensitive to the 

underlying probabilities. In summary, all researchers agree 

that people can identify the bias if the bias is significant 

enough. However, how they react to the bias is still a subject 

of discussion.  

Probability Learning and Decision-Making in 

Artificial Intelligence Literature 

Probability Learning and decision-making models are not 

following the same strategy when taking an action. Most of 

Reinforcement Learning models learn the outcome 

distribution of each action by using posterior distribution 

over the outcome of each action. These models seek to find 

the best possible action for each scenario (Zhu, 2018). On the 

other hand, cognitive models do not necessarily look for the 

best action. Instead, they try to simulate human behaviors in 

the same scenario, regardless of the optimality of choice 

(Lebiere et al., 2007). In line with psychology literature, 

cognitive models have different strategies for decision-

making. Reinforcement Learning models and cognitive 

models are capable of imitating both matching and 

maximizing decision-making strategies. 

Agents, developed using Reinforcement Learning (RL), 

interact with a task environment and generally learn to 

maximize their rewards (Sutton & Barto, 2018). These agents 

discover which actions to take to generate the highest 

possible rewards.  

The Reinforcement Learning model discovers the right set 

of actions to take by trial and error. By observing the result 

after each instance, the model learns the outcome distribution 

of the actions. There are two important components in 

learning the outcome distribution of each choice: (a) how to 

update the outcome distribution based on the action taken, 

and (b) what action to take. The reward function is the 

cornerstone of the learning aspect of RL models. It maps each 

action to the outcome. The environment's characteristics, 

such as the delay between taking an action and observing the 

outcome and the possible outcome distributions, can affect 

how the reward function is defined (Guo, 2017). Deep 

Reinforcement Learning models replace the reward function 

with a Neural Network and let the model determine the best 

reward function (Li, 2017).  

Decision-making strategies such as the Greedy algorithm 

results in maximizing, Boltzmann Exploration results in 

matching, and Thompson Sampling (Thompson, 1933) 

results in the combination of matching and maximizing 

behavior. 

 Due to this limitation of greedy algorithms, several 

methods have been developed to add exploration through 

randomly perturbing actions that a greedy algorithm would 

select (Dabney, Ostrovski, & Barreto, 2020; Masadeh, Wang, 

& Kamal, 2018; Tokic, 2010). These methods are called 

Dithering. The most basic Dithering method is called Epsilon 

Greedy Exploration. This method applies the greedy action 

with probability 1 − ε and otherwise selects an action 

uniformly at random. Although this type of exploration 

improves the performance of the greedy algorithm, it wastes 

resources by trying all the actions, even those that are 

unlikely to generate a better reward than what we already 

have. For example, half of the exploration is wasted by trying 

action 2. This issue gets worse as the number of actions 

increases.  

Thompson Sampling was introduced more than 80 years 

ago (Thompson, 1933). This method provides an alternative 

to dithering that more intelligently allocates the exploration 

effort. In this method, a Beta distribution with (α = 1, β = 1) 

is initially assumed for each action. At each instance, we 

sample from each action’s distribution. Whichever action 

gives us the largest sample value will be chosen. After the 

action is taken and the result is observed. If it is a success, α 

is increased by one. Otherwise, β is increased by one. This 

process will be repeated each time an action needs to be 

taken.  

Boltzmann Exploration utilizes a similar strategy of 

decision-making to ACT-R. The actions are taken 

stochastically. Initially, the reward for all actions is assumed 

to be equal. At each trial, the probability of taking an action 

i, is calculated as follows: 



𝑃𝑖 =
𝑒𝑈𝑖/𝑇

∑ 𝑒𝑈𝑖/𝑇𝑖∈𝑚

 

where m is the set of all actions. The action is going to be 

taken based on a discrete distribution with probabilities 

calculated from this equation. After each trial, the 

expected rewards for all actions are updated. This equation 

indicates that as the chance of actions being taken is 

proportional to the values of 𝑈𝑖/𝑇. 

The parameter T is known as temperature. It controls the 

randomness of the action. The higher the value of T, the 

more randomness happens in action selection. 

Methodology 

In this study, we considered a simple coin flip game. Every 

round, participants and models choose either head or tail. If 

their choice matches the game's choice, the result is winning 

the round and a message “Match” will show up. If the choices 

do not match, the result is losing that round and a message 

“Wrong” will show up. The probabilities of the computer 

choosing head or tail are not equal. In 70 percent of the 

occurrences, head will appear, and the tail will appear in 30 

percent of the trials. This game is an online browser game and 

is written in C# and was first used by (Tehranchi & Ritter, 

2020) to study the number of trials needed for ACT-R to 

match the probability of the biased coin. Figure 1 shows a 

screenshot of the game when a user starts playing. The 

models’ data of interactions with the game and their final 

decisions are saved.  

 

 

Figure 1: The game environment. It consists of a feedback 

area (where the "Ready" sign is shown) and visual objects 

(Head and Tail buttons). The feedback area will be changed 

based on the result of the played round. It shows "Match" if 

the choice is correct, and it shows "Wrong" if the choice is 

incorrect. 

The Coin flip game is played in an interactive environment. 

In this environment, the interface is susceptible to change if 

the user provides input. Every time a model chooses what to 

play for that round and clicks on the buttons. The feedback 

area is going to change. Also, the model continues to work 

even if the location of the environment window is moved. 

And because of that, the visual module implemented in ACT-

R cannot be used for this task. 

The ACT-R Model 

ACT-R’s actions that play the game can be broken down into 

several subtasks. Each subtask consists of some production 

rules that ACT-R uses to play the Coin flip game. 

Every visual object on display will be represented by a set of 

unique features for the visual module. Chucks are created by 

these features that provide declarative memory, the 

representation of the visual scene by the vision module. 

These chucks are visual location and visual object types. 

Production rules' constraints can match the chunks. The 

model consists of 3 visual objects, “Ready”, “Heads”, and 

“Tail”, in addition to 15 declarative memory chunks and 12 

production rules. Production rules execute shifting attention, 

finding the ready icon to start, choosing heads or tail, 

clicking, finding the visual feedback, and assigning reward 

value to the results. The reward value for matching is 6 and 

in case of wrong, the reward value of zero is assigned. The 

Utility Value and the sub-symbolic computations parameter 

are set to true. The value of temperature varies based on the 

decision-making strategy we are trying to replicate. All the 

other parameters are set to default. 

 

Starting the Game 

The model looks for the visual object "ready". If it finds it, 

the model is ready to choose an action. At this point, the 

reward (Utility) function for all the choices is equal.  

 

Taking an Action 

Based on the reward function, the model will take an action, 

retrieves the visual object corresponding to that action, moves 

the cursor to the visual location, and clicks. Each action has 

a probability of being taken. The probability for action i is 

calculated using the Boltzmann Equation: 

Probability(𝑖) =
𝑒𝑈𝑖/√2𝑠

∑ 𝑒𝑈𝑗/√2𝑠𝑗∈𝑚

 

 

Where the summation j is over all the productions which 

currently meet the conditions required. ACT-R multiplies the 

temperature value (T in Boltzmann Equation) by the square 

root of two.  

After the model decides what action to take, the model needs 

to find the visual object corresponding to that action and 

select (click) it. For this task, VisiTor first finds the location 

of the visual objects on the screen by Template Matching 

capability of the OpenCV Python library. The templates are 

predefined and saved as an image. Then, VisiTor will save 

that visual object as an image. In order to assure than VisiTor 

is robust to rescaling and size, different sizes of the template 

are checked. Then, VisiTor moves the mouse to the location 

of that object and clicks. 

 

Looking for Feedback 

After taking an action, the model expects feedback. The 

model tries to find which of the feedback visual objects is 

shown on the screen. The model first retrieves them into the 

memory module and then utilizes VisiTor. VisiTor search for 

the feedback visual object that is appearing on the screen.  

 

Updating the Reward Function 

Based on the feedback, the model updates the reward 

function for the action taken in the last step.  



𝑈𝑖(𝑛) = 𝑈𝑖(𝑛 − 1) + α[ 𝑅𝑖(𝑛) − 𝑈𝑖(𝑛 − 1)] 
Where: 

• α is the learning parameter 

• 𝑅𝑖(𝑛) is the effective reward value given to 

production i for its nth usage 

• 𝑈𝑖(0) is the initial utility value for production i  

Then the model goes back to the Taking an action section and 

repeats the whole process. 

Similar to ACT-R, RL models follow the same set of 

actions to play the game. The only difference is how the 

reward function is updated and the decision-making strategy. 

Here, we tried Epsilon Greedy, Boltzmann Exploration, 

Thompson Sampling, and PyIBL to analyze the differences. 

In this section, we will elaborate on the decision-making 

process of each model and what decision-making strategy 

they utilize in the coin flip game. 

PyIBL Model 

PyIBL uses the concept of blending to calculate the utility 

value of each choice in its decision-making process (Lebiere, 

1999). The blending mechanism consists of activation, base 

level activation, weights, utilities, noise, and temperature. 

Activation 

A fundamental part of retrieving an instance from the PyIBL 

model’s memory is computing the activation of that instance. 

The value of the activation is based on (a) how frequently and 

recently it has been experienced by the model and (b) how 

well it matches the attributes of what is to be retrieved. The 

activation is calculated based on the following formula: 

𝐴𝑖 = 𝐵𝑖 + 𝜖𝑖 
Where: 

• 𝐴𝑖: Activation of chunk i. It is also called “match 

score” 𝑀𝑖 

• 𝐵𝑖: This is the base-level activation and reflects the 

recency and frequency of use of the chunk. We 

elaborate on this and how to calculate this more 

• 𝜖𝑖: A noise value 

 

Base Level 

The base-level activation, 𝐵𝑖 , describes the frequency and 

recency of the chunk i. Its value depends upon the decay 

parameter of Memory, d. The base level activation is 

computed using the amount of time that has elapsed since 

each of the past appearances of i, which in the following are 

denoted as the various 𝑡𝑖𝑗. 

𝐵𝑖 = ln⁡ (∑𝑡𝑖𝑗
−𝑑

𝑗

) 

 

Activation Noise 

The activation noise, 𝜖𝑖, implements the stochasticity of 

retrievals from Memory. It is sampled from a logistic 

distribution centered on zero. It is normally resampled each 

time the activation is computed. 

 

Blending 

A weight is calculated for chunks using their corresponding 

activation values to present the contribution of chunks in the 

blending value. 

𝑤𝑖 = 𝑒
𝐴𝑖
𝜏  

With the activation values calculated for all the chunks 

corresponding to an action, the blending value is calculated 

as follows: 

𝐵𝑉 = ∑
𝑤𝑖

∑ 𝑤𝑗𝑗∈𝑚

𝑢𝑖
𝑖∈𝑚

 

Lastly, the action with the largest blending value is taken. If 

the outcome is already represented by a chunk, the base level 

activation will be updated. If not, a chunk will be created to 

represent the outcome in the next blending equation. 

Deep Reinforcement Learning  

First, a Neural Network predicts the outcome of each action 

based on the instances the model has seen so far. After each 

trial, the outcome is observed. Using the observed outcome, 

the model tries to tune the Neural Network parameters to 

predict the outcome more accurately. The loss function for 

the Reinforcement Learning model is defined as follows: 

L  =  E[( U(s, a; ⁡𝜃𝑘) − U(s, a))2] 
Where the first term is the Neural Network predicted reward 

function and the second term is the actual reward observed 

by the model. 𝜃 represents the Neural Network parameter. 

To take an action, the model predicts the reward value for all 

actions. The reward values are important for all decision-

making strategies. Different actions might be taken 

depending on what decision-making strategy is used. Figures 

2 and 3 show the flow chart of how Epsilon Greedy and 

Thompson Sampling play the coin flip game. 

Results 

The reward value that is assigned to match or wrong visual 

objects is an important factor in models’ convergence. In case 

of a small difference between the reward of a match and 

wrong, all models fail to learn bias and fail to show any 

decision-making strategy. With a proper choice of reward 

value, all the models show that they are capable of learning 

the bias in less than 200 trials. Both ACT-R and PyIBL are 

capable of implementing matching and maximizing decision-

making strategies. Figure 4 shows the effect of temperature 

on the decision-making strategy of the PyIBL model. For 

figure 4.a, the temperature value was set to one and for figure 

4.b, the temperature was set to 14. For small values of 

temperature, the PyIBL model will choose the maximizing 

strategy. As the value of temperature increases, the decision-

making strategy move towards matching. If the value of the 

temperature is set too high, the PyIBL agent will decide 

completely random (i.e., 50 percent of the time, the PyIBL 

model chooses head, and 50 percent of the time, it chooses 

tail).  

Figure 5 shows the effect of temperature on the decision-

making strategy of the ACT-R model. Figure 5.a displays the 

proportion of head and tail chosen by ACT-R if the 



temperature is set to 3. In Figure 5.b, the temperature was set 

to 0.5.  

 

Figure 2: The flowchart for the Epsilon Greedy algorithm 

contains five processes and one conditional operation. In 

each step, with the probability of Epsilon, the model takes a 

random action. Otherwise, it will select the action with the 

highest predicted utility value. 

 

Figure 3: Thompson Sampling Flowchart contains four 

processes. The beta distribution is assigned to each choice. 

At the beginning of the training, all parameters are equal to 

1. Meaning that the model assumes that parameters are all 

likely to generate an optimum result. At each step, samples 

are taken from each action distribution. The biggest sample 

determines what action should be taken. Then based on the 

result, the distribution of the action taken is updated. 

Similar to PyIBL, smaller values of temperature will result in 

maximization and as the value of temperature increases, the 

randomness of choices will increase. ACT-R shows more 

sensitivity to the value of the temperature in comparison to 

PyIBL. Meaning smaller changes in the value of temperature 

in ACT-R will result in more noticeable shifts in decision-

making strategy.  

Figure 6 shows the Epsilon Greedy maximizes the utility 

by only taking actions with the highest reward. This is exactly 

what is expected from this model. The Deep Reinforcement 

Learning with Epsilon Greedy decision-making strategy is 

designed to maximize the reward. The experiment shows that 

the maximizing behavior of the model has started after the 

fourth trial (where the reward value of the head became larger 

than the tail). A bad sequence of random occurrences might 

result in the model taking the wrong action as the maximizing 

action and may not be able to recover.  

 

Figure 4: Probability of choosing Head (Blue) and Tail 

(Orange) over 200 trials by PyIBL in the case of (a) 

maximizing and (b) matching with different temperatures. 

 

Figure 5: Probability of choosing Head (Blue) and Tail 

(Orange) over 200 trials by ACT-R in the case of (a) 

maximizing and matching (b) using different temperatures. 

Figure 7 suggests that Thompson Sampling started with 

matching and then maximized after gaining confidence that 

the estimated reward value of the head is larger than the tail. 

Figure 8 shows the decision-making by Deep Reinforcement 

Learning with Boltzmann Exploration. With the right value 

of temperature, this model can imitate both matching and 



maximizing behaviors. In summary, all the models that 

utilized the Boltzmann Equation in their action taking 

(decision-making) strategy (ACT-R, PyIBL and Deep 

Reinforcement Learning), are capable of both matching and 

maximizing. Epsilon Greedy decision-making strategy 

always results in maximizing. Thompson Sampling first 

matches the probability of the coin and when it is confident 

in the reward of the head is greater than the tail, it starts to 

maximize the reward by choosing heads. 

 

 

Figure 6: Probability of choosing Head (Blue) and Tail 

(Orange) over 200 trials by Deep Reinforcement Learning 

with Epsilon Greedy decision-making strategy. 

 

Figure 7. Probability of choosing Head (Blue) and Tail 

(Orange) over 200 trials by Reinforcement Learning with 

Thompson Sampling decision-making strategy. 

Conclusion 

We analyzed different models such as ACT-R, PyIBL, 

Reinforcement Learning with the Epsilon Greedy algorithm, 

Boltzmann Exploration, and Thompson Sampling decision-

making strategies. We studied the models’ capabilities to 

learn the bias and how they take an action. A web-based 

biased coin flip game was developed where models can 

interact and predict the next coin flip’s result. 

The outcome of the coin flip game (i.e., match or wrong 

visual objects) will be shown in the game environment. We 

introduced VisiTor, a Python-based tool that can facilitate the 

interaction between different models and task environments 

in any programming languages. 

The models utilized two main strategies to choose what 

action to take. They can "Maximize," meaning they can select 

the choice they believe has the highest probability of success 

and maximize their outcome. Or they "Match" the probability 

of the actions. We showed that among the well-known 

cognitive architectures and algorithms, ACT-R, PyIBL and 

Deep Reinforcement Learning with Boltzmann Exploration 

are capable of imitating all decision-making strategies by 

setting the right set of parameters. 

 

 

Figure 8: Probability of choosing Head (Blue) and Tail 

(Orange) over 200 trials by Deep Reinforcement Learning 

with Boltzmann Exploration. 

Epsilon Greedy and Thompson Sampling tend to "Maximize" 

before the 200th trial. However, Thompson Sampling tends to 

"Match" at the beginning and then it will "Maximize" the 

reward. The behavioral studies in this area believe people are 

using the same set of strategies. However, which strategy is 

used in what situations is still a topic of conflict. A more 

systematic study needs to be conducted to show under what 

circumstances people tend to minimize or maximize. Based 

on the result, we will be able to see which model can simulate 

human behavior and under what circumstances. 

Future Works 

In order to determine which model is behaving closest to 

humans, a study needs to be conducted to analyze human 

behavior. Models that utilize the Boltzmann Equation in their 

decision-making strategy, can be tuned to Match or 

Maximize. Behavioral studies in this area indicate mixed 

results and may vary case by case. A systematic review is 

needed in this area to categorize the results and analyze the 

reason behind the mixed results that are reported by the 

studies previously done to analyze human behavior. This 

experiment needs to be conducted to determine if humans 

tend to match, maximize, or combination of both.  

Also, currently, visual objects need to be predefined for 

VisiTor. A possible extension for VisiTor is to further extend 

its capabilities by having the model define the visual objects 

based on the human eye movement data. Users tend to pay 

closer attention to the visual objects they utilize to play. In 

the next version of VisiTor, we plan to have the model detect 

visual objects based on the eye-tracking data. 
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